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Abstract

Question: How can nearest-neighbour (NN) imputation be used to develop

maps of multiple species and plant communities?

Location: Western and central Oregon, USA, but methods are applicable

anywhere.

Methods: We demonstrate NN imputation by mapping woody plant commu-

nities for 4100 000 km2 of diverse forests and woodlands. Species abundances

on �25 000 plots were related to spatial predictors (rasters) describing climate,

topography, soil and geographic location using constrained ordination (CCA).

Species data from the nearest plot in multi-dimensional CCA space were

imputed to each map pixel. Maps of multiple individual species and community

types were constructed from the single imputed surface. We computed a variety

of diagnostics to characterize different qualities of the imputed (mapped)

community data.

Results: Community composition gradients were strongly associated with

climate and elevation, and less so with topography and soil. Accuracy of the

imputation model for presence/absence of 150 species varied widely (kappa 0.00

to 0.80). Omission error rates were higher than commission rates due to low

species prevalence, and areal representation of species was only slightly inflated.

A map of 78 community types was 41% correct and 78% fuzzy correct. Errors of

omission and commission were balanced, and areal representation of both rare

and abundant communities was accurate. Map accuracy may be lower for some

species than with other methods, but areal representation of species and commu-

nities across large landscapes is preserved. Because imputed vegetation surfaces

are developed for all species simultaneously, map units contain suites of species

known to co-occur in nature. Maps of individual species, and of community types

derived from them, will be internally consistent at map locations.

Conclusions: NN imputation is a useful modelling approach where maps of

multiple species and plant communities are needed, such as in natural resource

management and conservation planning or models that project landscape

change under alternative disturbance or climate scenarios. More research is

needed to evaluate other ordination methods for NN imputation of plant

communities.

Introduction

Many of today’s most challenging issues in natural re-

source management and conservation planning span

broad spatial scales, land ownership and administrative

boundaries, as well as long and complex ecological gra-

dients. In addition, landscape-scale issues typically re-

quire consideration of multiple interacting threats (e.g.

wildfire, invasive species, climate change) and benefits
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(e.g. wildlife habitat, watershed health, timber supply).

Consequently, analysts and decision makers increasingly

require basic quantitative and descriptive information

about vegetation and land cover over large landscapes

that is both highly detailed and spatially complete (i.e.

mapped) (Spies et al. 2007).

In this paper we present an approach for developing

detailed maps of plant community composition for large

landscapes using nearest-neighbour (NN) imputation (see

review by Eskelson et al. 2009). While awareness of NN

methods is now fairly high in forest inventory circles

(Eskelson et al. 2009; McRoberts et al. 2010), these meth-

ods are still relatively unknown among vegetation scien-

tists, community ecologists and landscape modellers. We

think NN imputation offers several advantages for land-

scape-level analyses that require information on the spatial

distributions of a large number of species, or of plant

community types defined by species relative abundances.

In this paper we demonstrate how NN methods can be

used to map species composition by presenting an analysis

for a large region in western Oregon, USA. We focus on the

advantages and limitations of NN methods for mapping

continuous change in community composition, which has

received little attention in the NN literature.

Nearest-neighbour imputation

Nearest-neighbour (NN) imputation is one means of

filling in missing data by substituting values from ‘‘donor’’

observations (Eskelson et al. 2009). The value imputed to

a location can be a value measured at another (donor)

location, or an average value computed from multiple

donor locations. In forest inventory, NN methods are used

to estimate detailed forest characteristics of large areas at a

reasonable cost. They are applied where limited (and less

expensive) data (X variables) are available for all observa-

tions, and more detailed (and more expensive) data (Y

variables) are available only for a sample. The Y variables

typically are measures such as tree basal area, density and

volume, derived from a sample of field plots or stand

exams. The primary X variables often are satellite imagery

and their derivatives (Tomppo 1991). The motivation

behind NN methods is that two locations with similar Xs

should also have similar Ys. Similarity (or distance)

between locations (the basis of choosing donor plot(s))

can be evaluated in different ways.

In practice, the distance measure, number of nearest-

neighbour plots (k), weighting of the plots in the calcula-

tions, choice of X and Y variables, and spatial scale

(resolution and extent) of X and Y variables all can be

varied to produce different variations of NN mapping. The

nearest donor plot(s) to each map unit can be identified

using Euclidean distance (kNN, Tomppo 1991), canonical

correlation analysis (most similar neighbour, MSN,

Moeur & Stage 1995), canonical correspondence analysis

(GNN, Ohmann & Gregory 2002), an imputation imple-

mentation (Crookston & Finley 2008) of Random Forest

(Breiman 2001) and others. When k = 1, vegetation attri-

butes measured on the single nearest plot are imputed to

each map unit. When k4 1, the mean, median, majority

or other summary measure across k plots is imputed.

When k = 1, the covariance structure of vegetation attri-

butes is maintained within each map unit, and the

variance structure of the imputations over the study area

is similar to the observations. With k4 1, local prediction

accuracy (RMSE) for individual variables may be stronger

(lower RMSE), but covariance structure is not maintained

and the range-of-variability of predicted values is reduced

(Moeur & Stage 1995; McRoberts et al. 2002; Stage &

Crookston 2007; Eskelson et al. 2009).

The most common implementation of NN in forest

inventory applications has been kNN using Euclidean

distance, k4 1, and satellite imagery for the X variables

(Tomppo 1991; Franco-Lopez et al. 2001; McRoberts et al.

2010). MSN with k = 1 has been widely applied by federal

land managers in the USA based on partial stand exam

data (Moeur & Stage 1995), and GNN with k = 1 has been

applied across much of the Pacific Northwest USA for

purposes of landscape analysis and monitoring (Spies

et al. 2007; Moeur et al. 2009). Virtually all forestry

applications of NN have emphasized forest structure, with

little attention given to species composition beyond

general forest types (but see Ohmann & Gregory 2002;

Ohmann et al. 2007; Hudak et al. 2008).

Error in NN predictions arises from measurement error,

error inherent in the particular imputation method and

pure error (variation in the Y variables not associated with

available X variables that is associated with the under-

lying true but unknown model) (Stage & Crookston

2007). Choice of X and Y variables, distance measure and

k all contribute to error, but no single choice gives best

results for all applications, nor for all response variables

within a given application, and models must be developed

on a case-by-case basis (Eskelson et al. 2009). Very few

studies have compared alternative NN methods specifi-

cally for mapping species composition. Furthermore,

although diagnostic tools for evaluating NN models are

becoming increasingly available (Crookston & Finley

2008; McRoberts 2009), few are specific to assessing

distributions of species or community composition.

Relationships to other community-level modelling

approaches

Although a large body of literature exists on modelling

the distributions of individual species (species distribution
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models, or SDMs), much less research has been devoted

to mapping plant community composition (Franklin

2009). Community-level modelling includes predictive

mapping of community types, species groups, axes or

gradients of compositional variation and other ecological

properties (Ferrier & Guisan 2006). Ferrier & Guisan

(2006) described three strategies for modelling at the

community level, each with advantages and limitations

for different applications: (i) ‘‘assemble first, predict later,’’

where data are first classified into community types that

are then spatially modelled; (ii) ‘‘predict first, assemble

later,’’ in which species are modelled and mapped indivi-

dually and then the stacks of species maps are classified or

summarized; and (iii) ‘‘assemble and predict together.’’ To

maximize utility for a variety of landscape analyses that

require spatial information on individual species, com-

munity types, or both, we sought a method that retains

information on individual species identities in the final

predictions. This ruled out strategy (i), as well as several

methods within strategy (iii). Furthermore, ‘‘stacks’’ of

species maps produced with strategy (ii), as well as any

community types derived from them, may yield unrealis-

tic combinations for a given map unit.

NN imputation, which falls in strategy (iii), is one of the

few methods with the potential capacity to model all

species simultaneously, to retain individual species iden-

tities in the spatial predictions, and (when k = 1) to

produce map units containing assemblages of species

known to co-occur in nature. Thessler et al. (2005) used

kNN to map ordination scores, but not species or commu-

nity composition. Thessler et al. (2008) used kNN to

distinguish floristically and structurally different forest

types, but did not map individual species. Others have

used ordination and gradient analysis in spatial predic-

tion, but not within a NN imputation framework. For

example, Guisan et al. (1999) used CCA to map individual

species, and Schmidtlein et al. (2007) depicted continu-

ous variation in community composition using ordination

scores. We know of only a handful of studies that have

used ordination within a NN framework for mapping

individual species and communities (Gottfried et al.

1998; Ohmann & Gregory 2002; Dirnböck et al. 2003;

Ohmann et al. 2007; Hudak et al. 2008).

A landscape-level approach for mapping multiple

species, communities and gradients

We suggest that NN imputation is a modelling approach

worth considering for cases where information is needed

on distributions of a large number of species, or of plant

community types defined by species presence or relative

abundance. NN maps are particularly useful where multi-

ple analytical needs are to be met by a single map, such as

within a landscape modelling framework, where interac-

tions among vegetation components are important.

Although much of our past work has emphasized forest

structure (Ohmann & Gregory 2002; Pierce et al. 2009), in

this paper we focus on how NN imputation can be used to

map gradients in species composition. We present an

analysis of gradients in vegetation composition over a

large forested landscape in western and central Oregon,

USA (Fig. 1), and use NN imputation to develop maps of

multiple species and forest community types. Resulting

maps can be used for many applications in forest manage-

ment, conservation planning and research. We think our

example of the NN imputation approach is unique in its

application over large geographic areas at a relatively fine

spatial resolution needed to support landscape analysis for

natural resource planning and policy decisions (Spies

et al. 2007; Moeur et al. 2009). Because our objective is

to demonstrate NN imputation as a general approach,

rather than to compare alternative methods, we present

only one NN method (GNN), which is based on con-

strained ordination (direct gradient analysis) (ter Braak

1986).

Methods

Study area

Our study area is 109 279 km2 in western and central

Oregon, USA (Fig. 1). Our models apply only to the 81%

of the region that is forest or woodland (Z10% tree

cover). Western Oregon has a maritime climate with mild,

wet winters, cool dry summers and heavy precipitation.

Precipitation increases and temperature decreases from

Pacific
Ocean

Elevation (m) 

USA 

Fig. 1. Study area in western and central Oregon, USA, showing the

elevation gradient.
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south to north. East of the crest of the Cascade Mountains

in central Oregon, temperatures fluctuate more widely

and are more extreme, frost-free seasons are shorter and

precipitation is much less. Elevations range from sea level

to 43000 m. Soil types are primarily inceptisols, spodo-

sols and ultisols. Volcanic activity during the Pleistocene

and Holocene has mantled large tracts at higher eleva-

tions in the Cascade Range and in central Oregon with

pumice and ash. Ultramafic parent materials strongly

influence community composition in parts of southwest

Oregon.

Coniferous tree species dominate forest communities.

Outside of the mixed-evergreen zone of southwest Ore-

gon, where several evergreen hardwood trees co-domi-

nate, broadleaf trees tend to occupy harsh sites or riparian

habitats, or serve as pioneers. The forest zones of interior

southwest Oregon represent northern extensions of the

mixed-conifer forest of the Sierra Nevada and the mixed

sclerophyll forest of the California Coast Ranges. In

central Oregon, Pacific coastal elements mix with Rocky

Mountain elements.

Fire is the predominant natural disturbance. Natural

fire-return intervals ranged from 15 years in drier eastside

pine forests, to 400 years in moist coastal forests, to 800

years in subalpine forests (Agee 1993). In the last 100

years, natural disturbance regimes have been supplanted

by timber management and wildfire suppression. See

Ohmann & Spies (1998) and Franklin & Dyrness (1973)

for more detailed descriptions of the region.

Plot data

The Y variables (response variables) were abundances of

woody species (trees and shrubs) measured on a sample of

24 937 field plots from regional forest inventories (Forest

Inventory and Analysis (FIA), USFS; Current Vegetation

Survey (CVS), USFS and BLM); the Region 6 Ecology

Program, USFS; and the interagency Josephine-Jackson

County Fuel Mapping Project. The FIA and CVS plots were

installed on systematic grids. We used only plots on forest

land, defined as Z10% tree cover or being assigned to a

forest or woodland plant association. Plot sizes ranged

from 500 m2 (Ecology plots) to a cluster of subplots

distributed over about 1 ha (inventory plots). Cover of

shrub and herbaceous species was visually estimated to

the nearest 5% on all plots. Tree species cover was visually

estimated to the nearest 5% on Ecology plots, and com-

puted from other tallied attributes (tree diameter, height

and live crown ratio) on the inventory plots. We excluded

extremely rare (o20 occurrences) and non-native species

from model development. Herbaceous species were ex-

cluded because of concerns about inconsistent sampling

protocols and species identification across the plots. Vege-

tation data for the FIA and CVS plots are available from

FIA (http://www.fs.fed.us/pnw/fia/), and the Ecology Pro

gram plots are available from http://ecoshare.info/.

Explanatory variables (spatial predictors)

The X variables (explanatory variables or spatial predic-

tors) were rasters representing climate, topography, soil

parent material and geographic location (Table 1), re-

sampled to 30-m resolution for modelling. Climate vari-

ables were derived from PRISM data (Daly et al. 2008),

which were 1971–2000 normals with native spatial reso-

lution of 800 m. We did not use satellite imagery

in the model. Previous experience showed that including

Landsat spectral data, which is correlated primarily

with local-scale variation in forest structure, reduces

prediction accuracy for species composition in models

spanning large regions (Ohmann & Gregory 2002;

Ohmann et al. 2007). In addition, the plots were mea-

sured over a span of many years, which precludes use

of imagery from a single date. For these reasons,

disturbance and successional status are not taken into

account, and the models should be considered an approx-

imation of potential distributions of species and plant

communities.

Constrained ordination (direct gradient analysis)

with CCA

Because our intent was to demonstrate NN imputation as

a general approach for spatial modelling of community

composition rather than to compare NN methods, we

limited our analysis to a single method: GNN (based on

CCA) with k = 1. Although previous research (Hudak et al.

2008; Grossmann et al. 2010, unpubl. report, http://

www.fsl.orst.edu/lemma/pubs) suggests that Random

Forest NN slightly outperforms GNN and other NN meth-

ods for mapping tree species composition, implementa-

tion of Random Forest NN for large rasters and large

numbers of plots is computationally prohibitive with

current software and hardware. Both studies demon-

strated that several NN methods (including GNN) per-

formed similarly well.

In developing the GNN variation of NN imputation

(Ohmann & Gregory 2002), we looked to ordination for

a distance measure that would allow analysis of multi-

species plant communities and also facilitate interpreta-

tion of ecological gradients. Despite known limitations,

we chose CCA because it is a constrained ordination

method that allows prediction, based on a linear combi-

nation of explanatory variables. CCA also accommodates

sparse data matrices and nonlinear responses of species

along environmental gradients. Although the validity of

the Gaussian model of species distributions that underlies
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correspondence analysis and its derivatives remains un-

der debate (Austin 2002), violations (such as skewed

species distributions) are not thought to cause problems

for CCA (McCune & Grace 2002). Furthermore,

within an imputation framework the critical feature

affecting prediction is the relative positions of plots

in ordination space. Resulting maps should be satisfactory

if plots with similar species composition are closer to-

gether in ordination space and dissimilar plots are further

apart.

Another potential concern with CCA is its use of multi-

ple regressions of community gradients on environment

variables, which limits the kinds of gradient that can be

captured by the ordination. However, a previous analysis

of similar data showed that axis scores from detrended

correspondence analysis (DCA), an unconstrained ordi-

nation method, and detrended CCA were strongly corre-

lated, suggesting that much of the variation in vegetation

was related to the measured explanatory variables (Oh-

mann & Spies 1998). Furthermore, CCA is robust to

multicollinearity that can cause problems in other regres-

sion applications (Palmer 1993).

We used the forward step-wise procedure of CCA in

CANOCO version 4.5 (Microcomputer Power, Ithaca, NY,

US) to identify a reduced set of explanatory variables. We

added explanatory variables to the model in the order of

greatest additional contribution to explained variation.

Variables were added if significant (Po0.01), where

significance was determined by a Monte Carlo permuta-

tion test using 99 permutations (H0: additional influence

of variable on vegetation is not significantly different from

random), and if adding the variable did not cause any

variance inflation factors to exceed 20. We excluded

UTME and UTMN from the step-wise procedure because

they are strongly correlated with several of the climate

variables and do not directly influence species distribu-

tions. However, we added UTME and UTMN to the final

CCA model used in the imputation, to encourage selec-

tion of NN plots that are closer in geographic space as well

as in gradient space. Response variables in CCA were

cover (percentage) by species, square-root transformed

to dampen the influence of dominant species, and we did

not down-weight rare species.

Nearest-neighbour imputation

To implement GNN, we used the R package vegan (Vegan:

community ecology package. Version 1.8-8. http://cran.

r-project.org/, http://vegan.r-forge.r-project.org/.) to run

the final CCA model, a C11 program (GNNRun) with

fast neighbour-finding (Finley & McRoberts 2008) to

conduct the imputation, and Python and R scripts to

compute a suite of model diagnostics. The GNNRun

program is available on request. Alternatively, NN methods

(including GNN) can be implemented using the R package

yaImpute (Crookston & Finley 2008), and some diagnostics

can be computed using the R package nnDiag (k-nearest

neighbor diagnostic tools. Version 0.0-5. http://cran.r-pro

ject.org/, http://blue.for.msu.edu/NAFIS/software.html.).

Neighbour-finding was based on Euclidean distance

within CCA ordination space defined by the first eight

CCA axes, with axes scores weighted by their eigenvalues,

and using scores that are linear combinations of the

explanatory variables. For each map pixel, distance was

calculated to each of the 24 937 plots, and the nearest plot

was identified and associated with the pixel.

Table 1. Spatial predictors (explanatory variables) used in CCA and GNN

imputation.

Variable

subset

Code Description

Climate ANNPRE Mean annual precipitation (natural logarithm,

mm)

ANNTMP Mean annual temperature ( 1C)

AUGMAXT Mean maximum temperature of the hottest

month (August) ( 1C)

CONTPRE Percentage of annual precipitation falling

during the growing season (June–August)

DECMINT Mean minimum temperature of the coldest

month (December) ( 1C).

SMRTP Growing season moisture stress, the ratio of

mean temperature ( 1C) to precipitation

(natural logarithm, mm), May–September

STRATUS Percentage of hours in July with cloud ceiling

of marine stratus o 1524 m and visibility

o 8 km. (unpubl. data from Chris Daly,

resolution 795 m)

Topography ELEV Elevation (m)

ASP Cosine transformation of aspect (degrees)

SOLAR Cumulative potential relative radiation during

the growing season (Pierce et al. 2005)

SLOPE Slope (%)

TPI Topographic position index, calculated as the

difference between a cell’s elevation and the

mean elevation of cells within a 450-m radius

window

Parent

material

ASH Total depth of ash deposition (feet), primarily

from Mt. Mazama in the eastern Cascades

(unpubl. data from Mike Simpson)

ALLUV Unconsolidated material deposited by rivers

(categorical)

SILICIC Contains rocks with minerals high in silica

(categorical)

ULMA Rocks with ultramafic minerals including

serpentine (categorical)

SAND Sandy sediments (categorical)

Location UTME Universal Transverse Mercator easting (m)

UTMN Universal Transverse Mercator northing (m)
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The model output is in ArcGIS grid format, where

each pixel is assigned a unique plot identifier and sum-

mary attributes from the plot are joined from a database

table.

Developing maps of species distributions and

community types from the imputation model

Every pixel in the map was imputed with data from a

single field plot, which allowed us to generate a distribu-

tion map for any species observed on at least one of the

plots. In addition, as an example of how imputed maps

can be used in mapping plant community types, we

classified all plots into Ecological Systems (Comer et al.

2003). Ecological Systems are related to the hierarchical

US National Vegetation Classification System, but not

nested within it. They are a conceptual aggregation of

plant associations that generate groupings more floristi-

cally detailed than Formation, but less than Alliance and

Association, and were defined partly with the intent of

creating ‘‘mappable’’ units. Ecological Systems emphasize

existing dominant vegetation types, and are defined as

groups of plant community types that tend to co-occur

within landscapes with similar ecological processes, sub-

strates and environmental gradients (Comer et al. 2003).

The Ecological Systems classification has been adopted by

the Gap Analysis Program for vegetation mapping and

conservation planning at the regional to national level

(Kagan et al. 2008; Grossmann et al. 2010). We built keys

to classify plots into Ecological Systems based on plant

community composition, primarily cover of individual

species, with the list of possible Systems constrained to

those that occur within the physiographic provinces of

our study area. We developed the logic behind our keys

from the NatureServe descriptions of the Ecological Sys-

tems (http://www.natureserve.org/getData/USecology-

Data.jsp), indicator species lists and classification

guidelines provided by NatureServe and the LANDFIRE

program (http://www.landfire.gov), and expert opinion

of ecologists in our region.

Evaluation of the CCA ordination and the

imputed maps

To evaluate how well the constrained ordination repre-

sented among-plot distances in the original data set, we

computed after-the-fact correlations between ordination

distances and distances in the unreduced species space

using relative Euclidean distance (McCune and Grace

2002), implemented in PC-ORD version 5 (MjM Soft-

ware, Gleneden Beach, OR, US).

To evaluate the imputed map, we computed a variety of

diagnostics that address different aspects of model error and

uncertainty for various measures of species composition.

The multiple model diagnostics provide different character-

izations of a single imputation model. They allow users to

evaluate the maps for their particular application, and

provide a basis for comparison with other studies. Note that

mapped species distributions contained in the imputed

spatial predictions are not expressed as probabilities, where

a threshold value (e.g. 0.50) can be chosen to classify a

species as present. Therefore, the effects of varying the

threshold probability on model accuracy measures such as

sensitivity and specificity (Franklin 2009) could not be

evaluated, and metrics such as area under the curve

(AUC) of the receiver operating characteristic (ROC) (Han-

ley & McNeil 1982) could not be computed.

Several diagnostics were computed at the local- (plot-)

scale based on a modified leave-one-out cross-validation,

described in Ohmann & Gregory (2002) as the second-

nearest-neighbour procedure. For the locations of the

24 937 plots in the model, we compared observed to

predicted values from the second-nearest-neighbour plot

(the NN would be the plot itself). Although technically

not the same as a true leave-one-out analysis, we have

observed that individual plots do not have a measurable

effect on CCAs for our very large sample sizes. From the

cross-validation we computed RMSEs and correlations for

continuous variables such as species richness; kappa

statistics (Cohen 1960) for species presence/absence; and

kappas and confusion matrices for plant community types

(Ecological Systems). In assessing model accuracy for

Ecological Systems, we also applied fuzzy set methods

(Gopal & Woodcock 1994; Congalton & Green 1999),

which recognize that thematic mapping involves placing

a continuum of vegetation change into discrete classes

and that there can be different magnitudes of error among

classes. We defined our fuzzy sets based on similarity

among the Systems in several dimensions: seral relation-

ships, geographic proximity (Systems that tend to occur

near one another were considered more similar); and

similarities in moisture regimes, elevational limits, species

composition, structure and soil types. Ecological System

pairs that were similar in multiple dimensions were

designated as ‘‘fuzzy correct’’ for fuzzy accuracy assess-

ment (Grossmann et al. 2010). For example, the NP Dry-

Mesic DF-WH Forest was classified as ‘‘fuzzy similar’’ to

the NP Mesic-Wet DF-WH Forest.

We computed several diagnostics of the imputed map

for various measures of species composition using R

scripts that are ‘‘wrappers’’ for R functions from published

R packages. The scripts compare observed and predicted

(imputed) values. We calculated several measures of

species diversity based on the ‘‘diversity’’ function in the

R package vegan (Vegan: community ecology package. Ver-

sion 1.8-8. http://cran.r-project.org/, http://vegan.r-for

ge.r-project.org/). We calculated the distance within
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species multivariate space between observed and imputed

community composition for each plot location using

distance metrics in the R packages vegan and labdsv

(Version 1.4-1. http://cran.r-project.org/, http://ecolo

gy.msu.montana.edu/labdsv/R.). We present Bray-Curtis

and the binomial metric to illustrate complementary

dimensions of plant community composition. The Bray-

Curtis metric tends to place plots close together when

they contain the same dominant species, whereas the

binomial metric places plots far apart when their species

lists differ, even with respect to minor species. We calcu-

lated the median percentage improvement in terms of

these distance measures as the difference between the

observed–predicted distance versus the median distance

from each observed plot to all other observed plots. We

also assessed species lists for observed and imputed com-

munities for errors of commission (false positives, species

predicted to occur at a given plot location that were

absent in the observed data) and omission (false nega-

tives, species present in the original data that are absent in

the imputed prediction for that location). The R scripts,

which are available on request, reference the yaImpute

object and so can be used with the R package yaImpute

(Crookston & Finley 2008).

At the regional scale, we compared area distributions

for species and communities predicted from our model to

sample- (probability-) based estimates from the FIA plots,

as a way of evaluating areal representation across a

broader area. Model uncertainty also was depicted spa-

tially using a map of NN distance.

Results

Primary gradients in species composition and

environment

A total of 158 woody species, 39 trees and 119 shrubs,

were recorded on the 24 937 plots. Median richness

(alpha diversity) on the plots was 10 species, the same as

the median alpha diversity for all pixels in the imputed

map. Species turnover across plots in our large region was

high. Prevalence (frequency of species occurrence on

plots) was low for most species (median 1.5%), with trees

generally more prevalent (median 4.2%) than shrubs

(median 0.9%). In total, 54% of tree species and 25% of

shrub species were present on at least 5% of the plots

(Table 2). Only one tree (Pseudotsuga menziesii) and

one shrub (Mahonia nervosa) were present on 450% of

the plots.

Nearest-neighbour distance, an indicator (rather than a

direct measure) of model uncertainty and plot support for

the imputation, is shown in Fig. 2. Each pixel value

represents the distance from that pixel to the NN plot

imputed by GNN, where distance is Euclidean, in eight-

dimensional gradient space with axes weighted by their

eigenvalues.

The first four CCA axes were readily interpretable and

were most strongly associated with broad-scale climate

(Fig. 3). Eigenvalues were 0.571 (axis 1), 0.401 (axis 2),

0.264 (axis 3) and 0.171 (axis 4), with subsequent axes

o 0.10. Although we used eight axes in the imputation,

later axes have very little influence on neighbour selec-

tion because distances are weighted by the eigenvalues.

After-the-fact correlations between ordination distances

and distances in the unreduced species space indicated

that axis 1 explained the most variation in the species data

(r2 = 0.338), followed by axis 2 (r2 = 0.081) and axis 3

(r2 = 0.012). After-the-fact correlations were very similar

for CCA models with and without UTME and UTMN.

Axis 1 was positively associated with elevation, and with a

gradient of maritime climate along the coast (low axis

scores) to more continental conditions east of the Cas-

cades (high axis scores). The direction of change was

nearly longitudinal (correlated with UTME) (Figs 3 and

4). Axis 1 also reflected the steeper and more dissected

topography in western Oregon (Figs 3 and 4). Axis 2 was

predominantly a gradient in moisture, especially during

the summer growing season, and was structured latitud-

inally (correlated with UTMN) (Figs 3 and 4). Axis 3

reflected a latitudinal gradient in the seasonality of pre-

cipitation (Fig. 4), and axis 4 (not shown) indicated

frequency of summer stratus conditions. Several soil

parent materials were significant in the ordination but

were not important until later axes. Only a few parent

materials explained significant amounts of variation and

their effects were limited to certain regions: sand near the

Coast, ultramafic in southwest Oregon and ash depth in

central Oregon.

Plots (not shown) and species were arrayed on the first

two CCA axes in readily interpretable ways (Fig. 3).

Species associated with drier forests east of the Cascades

were concentrated in the upper-right quadrant, species of

high-elevation forests along the crest of the Cascades in

the lower-right, coastal species associated with maritime

climate in the lower-left, and species found in mixed-

evergreen forests and Quercus woodlands of southwest

Oregon and the interior valleys of western Oregon in the

upper-left.

Imputed maps of individual species

Although all of the 158 species can be mapped from the

single GNN imputation model, for brevity we show pre-

dicted presence for five tree species (Fig. 5). The species

represent a variety of habitat associations that span the

dominant gradients captured by CCA axes 1 and 2

(species are circled in Fig. 3). Juniperus occidentalis is the
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Table 2. Diagnostics for predicted species presence/absence from GNN imputation, listed by descending prevalence. All but areal representations are

calculated from cross-validation using terminology and methods from Franklin (2009). Only those shrub species present on Z5% of model plots are

shown. Areal representation is area where species is predicted present in the model compared to area present in the systematic sample of 2853 plots.

Species with positive values are over-predicted and negative values are under-predicted.

Species

group

Code Species Prevalence From cross-validation Areal

representation

(%)
False

negative

rate

False

positive

rate

Kappa

Trees PSME Pseudotsuga menziesii 0.759 0.050 0.150 0.799 4.8

TSHE Tsuga heterophylla 0.373 0.203 0.129 0.667 7.8

ABGRC Abies grandis and A. concolor 0.322 0.279 0.128 0.594 6.6

CHCH7 Chrysolepis chrysophylla 0.238 0.497 0.161 0.340 3.6

PIPO Pinus ponderosa 0.226 0.264 0.077 0.659 2.0

CADE27 Calocedrus decurrens 0.194 0.393 0.102 0.500 4.4

ARME Arbutus menziesii 0.169 0.349 0.072 0.577 3.1

ACMA3 Arctostaphylos manzanita 0.165 0.501 0.098 0.401 5.9

THPL Thuja plicata 0.155 0.461 0.086 0.451 4.0

PICO Pinus contorta 0.135 0.244 0.041 0.710 � 0.6

PILA Pinus lambertiana 0.120 0.518 0.071 0.409 3.4

ABPRSH Abies procera, A. shastensis and

A. magnifica

0.114 0.322 0.042 0.636 1.1

TABR2 Taxus brevifolia 0.114 0.612 0.080 0.307 4.6

CONU4 Cornus nuttallii 0.112 0.576 0.074 0.349 6.5

ABAM Abies amabilis 0.106 0.279 0.035 0.682 1.6

TSME Tsuga mertensiana 0.102 0.239 0.028 0.733 0.9

ALRU2 Alnus rubra 0.095 0.615 0.058 0.336 � 1.5

PIMO3 Pinus monticola 0.092 0.509 0.053 0.436 1.6

LIDE3 Lithocarpus densiflorus 0.090 0.221 0.022 0.757 2.4

QUCH2 Quercus chrysolepis 0.079 0.417 0.034 0.554 2.0

QUKE Quercus kelloggii 0.052 0.421 0.022 0.565 1.7

UMCA Umbellularia californica 0.032 0.476 0.017 0.502 1.2

CHLA Chamaecyparis lawsoniana 0.031 0.474 0.016 0.502 1.1

QUGA4 Quercus garryana 0.031 0.541 0.016 0.449 0.3

PRUNU Prunus spp. 0.030 0.812 0.024 0.171 1.8

ABLA Abies lasiocarpa 0.023 0.537 0.012 0.463 0.2

JUOC Juniperus occidentalis 0.022 0.449 0.010 0.540 1.4

PISI Picea sitchensis 0.022 0.299 0.009 0.664 0.3

PIEN Picea engelmannii 0.017 0.700 0.012 0.288 0.2

CELE3 Cercocarpus ledifolius 0.013 0.549 0.007 0.447 1.3

LAOC Larix occidentalis 0.011 0.636 0.006 0.379 0.5

PIAL Pinus albicaulis 0.010 0.667 0.005 0.362 0.1

PIJE Pinus jeffreyi 0.008 0.521 0.006 0.440 0.3

PIAT Pinus attenuata 0.005 0.797 0.004 0.194 0.1

FRLA Fraxinus latifolia 0.005 0.894 0.004 0.111 0.0

POTR5 Populus tremuloides 0.005 0.831 0.004 0.161 0.3

CHNO Chamaecyparis nootkatensis 0.003 0.704 0.002 0.296 0.0

POBAT Populus balsamifera ssp.

trichocarpa

0.003 0.937 0.002 0.071 � 0.2

PIBR Picea breweriana 0.001 0.677 0.001 0.372 0.1

ALRH2 Alnus rhombifolia 0.001 1.000 0.001 0.000 � 0.2

SESE3 Sequoia sempervirens 0.001 0.714 0.001 0.266 0.0

Shrubs MANE2 Mahonia nervosa 0.511 0.201 0.199 0.600 1.2

RUUR Rubus ursinus 0.408 0.354 0.239 0.407 3.7

GASH Gaultheria shallon 0.323 0.258 0.121 0.622 1.8

VAPA Vaccinium parvifolium 0.314 0.285 0.134 0.580 7.0

CHUM Chimaphila umbellata 0.306 0.343 0.152 0.505 2.2

ACCI Acer circinatum 0.301 0.315 0.126 0.562 � 0.2

HODI Holodiscus discolor 0.235 0.460 0.135 0.409 1.6

COCOC Corylus cornuta var. californica 0.233 0.418 0.123 0.462 2.7

J.L. Ohmann et al. Extending plot data for landscape analysis

Journal of Vegetation Science

Doi: 10.1111/j.1654-1103.2010.01244.x. Published 2011. This article is a US Government work and is in the public domain in the USA. 667



dominant tree species in the dry woodlands at the east-

ernmost fringe of the study area. Tsuga mertensiana dom-

inates the highest forested zone along the western slopes

of the Cascades. Picea sitchensis characterizes forest in a

narrow band along the coast. Lithocarpus densiflorus is a

dominant evergreen broadleaf tree characteristic of the

mixed evergreen forests of southwest Oregon. Quercus

garryana, a deciduous broadleaf tree, is common in Quer-

cus woodlands of the interior valleys of western Oregon

and east of the Cascades in the northeastern portion of

our study area.

Based on cross-validation, alpha diversity at the plot

locations averaged 10 species for both observed (plots)

and predicted (mapped). However, on average the predic-

tions at plot locations included four species omission

errors and four commission errors. Overall, when ex-

pressed as a rate, errors of omission (false negatives) were

greater than errors of commission (false positives), be-

cause of the very low species prevalence (Table 2). The

error of omission rate was 66% for all species (53% for

trees and 71% for shrubs). The error of commission rate

was 3% for all species (4% for trees and 3% for shrubs).

The average kappa for all 158 species was 0.31, but

values ranged widely, from 0.00 to 0.80 (Table 2). Kappas

generally were better for more prevalent species: the

average kappa for 51 species present on at least 5% of

plots was 0.49. Model performance also was better for

those species having distributions with clearly defined

limits in elevation or climate. For example, Picea sitchensis

is confined to the zone of summer fog along the Pacific

Coast and is present on only 2% of the plots, but had a

kappa of 0.66.

In terms of areal representation, the model slightly

over-predicted the distribution of individual species on

the landscape when compared to estimates from a sub-

sample of 2853 FIA plots established on a systematic grid

(Table 2). On average, individual species were predicted to

be present on 1.5% more of the total forest area than

expected based on the sample-based estimates. Tree spe-

cies were slightly more over-predicted on average (1.7%)

than were shrubs (1.4%). However, the magnitudes of

difference were greater for shrubs than for trees (Table 2).

Imputed maps of community composition and types

(Ecological Systems)

The median Bray-Curtis distance between observed and

imputed community composition for the plots was 0.48,

and the median binomial distance was 51.6. The median

improvement in the model over the median distance to all

other plots was 59% for Bray-Curtis and 47% for binomial.

Fifty forest Ecological Systems were sampled by forest

plots in the study area, and an additional 28 non-forest

Systems were sampled by very small numbers of plots

having very low tree cover (data not shown). The

imputed Systems for part of the western Cascades is

Table 2. Continued

Species

group

Code Species Prevalence From cross-validation Areal

representation

(%)
False

negative

rate

False

positive

rate

Kappa

RHMA3 Rhododendron macrophyllum 0.204 0.371 0.096 0.533 0.1

CHME Chimaphila menziesii 0.153 0.659 0.121 0.219 7.5

VAME Vaccinium membranaceum 0.145 0.358 0.063 0.576 1.0

TODI Toxicodendron diversilobum 0.138 0.370 0.059 0.571 1.0

LOHI2 Lonicera hispidula 0.130 0.434 0.067 0.497 6.2

AMAL2 Amelanchier alnifolia 0.121 0.590 0.079 0.333 2.3

RUPA Rubus parviflorus 0.120 0.742 0.092 0.170 0.6

PAMY Paxistima myrsinites 0.119 0.494 0.063 0.448 0.4

VAOV2 Vaccinium ovatum 0.106 0.315 0.037 0.648 0.4

ARPA6 Arctostaphylos patula 0.099 0.466 0.047 0.496 � 2.6

PUTR2 Purshia tridentata 0.097 0.178 0.021 0.796 � 1.1

MAAQ2 Mahonia aquifolium 0.095 0.588 0.061 0.353 3.3

SYAL Symphoricarpos albus 0.090 0.587 0.053 0.369 � 2.2

RUSP Rubus spectabilis 0.084 0.452 0.039 0.514 � 0.9

RULA2 Rubus lasiococcus 0.079 0.537 0.048 0.412 3.2

CEVE Ceanothus velutinus 0.078 0.583 0.047 0.375 � 2.7

FRPU7 Frangula purshiana 0.076 0.656 0.053 0.292 4.6

ARNE Arctostaphylos nevadensis 0.061 0.588 0.037 0.378 � 1.7

RICE Ribes cereum 0.055 0.566 0.032 0.408 � 1.2

VAOV Vaccinium ovalifolium 0.053 0.535 0.032 0.425 1.5
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shown in Fig. 6. Overall prediction accuracy from cross-

validation for all 78 Ecological Systems was 41%, and

fuzzy accuracy was 78%. For the forest Systems that

occupied at least 1% of the forest area in the model,

overall and fuzzy accuracies were 35% and 71%, and

average kappa and fuzzy kappa were 0.32 and 0.76

(Table 3). In terms of areal representation, the differences

between model- and sample-based estimates of forest area

in each Ecological System was slight (� 2% difference for

all of the most abundant Systems) (Table 3).

Discussion

Evaluating the ordination within the context of NN

imputation

Total variation explained (TVE) in the CCA, calculated as

the sum of all constrained eigenvalues divided by the total

variation (inertia), was 10.2% – at the low end of the

10–50% range typically reported for CCA (Palmer 1993).

Although low TVEs often are attributed to unmeasured

explanatory variables, Økland (1999) demonstrated that

eigenvalues from polynomial distortion axes can contri-

bute 30–70% of total inertia. The percentage is larger for

data sets with high beta diversity, as in this study and as

reported previously for a similar data set (Ohmann &

Spies 1998). Furthermore, TVEs cannot be compared

among studies based on different data sets or ordination

methods.

McCune & Grace (2002) recommend the after-the-fact

correlation of among-plot distances in the constrained

ordination space with distances in the original species

space as a more appropriate measure of explained varia-

tion. This measure of model fit has intuitive appeal for NN

imputation, where the critical feature affecting outcome

(nearest neighbour selection) is how well the constrained

ordination retains the relative positions of plots as defined

by their species relative abundances. The resulting im-

putation (map) should be satisfactory if plots with similar

species composition are closer together in ordination

space and dissimilar plots are farther apart. The Bray-

Curtis and binomial distances calculated between pre-

dicted (imputed) and observed composition provide a

measure of this aspect of model fit.

By presenting only one variation of NN imputation,

with a distance measure based on CCA, we do not mean

to advocate CCA over potential alternatives. We encou-

rage additional research on other distance measures in NN

imputation where the objective is to map multi-species

communities. Other ordination methods, such as non-

metric multidimensional scaling (NMS; Kruskal & Wish

1978) (with an additional step required for prediction) or

multidimensional fuzzy set ordination (Roberts 2009),

may prove superior for ecological explanation and avoid

the pitfalls of CCA. NN imputation based on Random

Forest (Crookston & Finley 2008) appears promising for

species mapping (Hudak et al. 2008), but further devel-

opment is needed to make the algorithm computationally

feasible for large sample sizes. In addition, Random Forest

results are less interpretable ecologically and imputation

‘‘distance’’ is less intuitive.

Limitations of the plot data for regional vegetation

modelling and mapping

Combining large plot data sets for vegetation modelling

and mapping across large regions presents many chal-

lenges, a discussion of which is beyond the scope of this

paper. However, it is worth mentioning the reliability of

plant species identification on the plots. We purposefully

limited our analysis to trees and shrubs, which generally

are more reliably identified in the field than herbaceous

species. Nevertheless, our plot data undoubtedly contain

species omissions, misidentifications and other errors. In

NN imputation with k = 1, these errors are transferred

directly to the map rather than ‘‘averaged out,’’ and map

users need to be alert for anomalies.

Disturbance and successional status were not taken

into account in the GNN model. The plots were measured

Low 

High 

Fig. 2. Nearest-neighbour distance, an indicator of model uncertainty

and plot support. Distance is calculated for each map pixel from values

for the spatial predictors. Distance is Euclidean, in eight-dimensional CCA

space with axes weighted by their eigenvalues. Grey areas are nonforest.
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over a range of many years, and established in forests with

a range of ages and disturbance histories. The models

should be considered an approximation of potential dis-

tributions of species and plant communities. Even on

heavily disturbed sites in the region, few woody species

are totally eliminated, and ordinations of long gradients

are influenced more by species presence than by abun-

dance (Ohmann & Spies 1998).

The map of Ecological Systems is just one example of

how species abundance data can be used to classify the

plots, followed by mapping the classification across the

landscape based on the imputed plot locations. Other

classifications can be applied and mapped without having

to develop a new model. Ecological Systems presented

several challenges for modelling. The classification system

was defined without specific experience of what can be

reliably modelled with typical plot and spatial data. In the

classification key, many of the Systems are distinguished

by minor shifts in abundance among one or a few tree or

shrub species. The large number of classes, and the

similarity among several of the Systems, results in a fairly

low per cent correct, although many of the confusion

errors are minor, as reflected in the higher fuzzy accura-

cies (Table 3).

Strengths and limitations of imputed maps of

multiple species and plant communities

Statistical properties and sampling considerations for NN

imputation

The NN imputation methods are non-parametric, in that

they do not rely on any underlying probability distribu-

tion, as well as multivariate in that multiple X-variables

can be used and multiple Y-variables can be predicted for

any given map unit. These are significant advantages for

spatial prediction of ecological communities. On the

down side, it has been demonstrated that NN methods

may require a relatively large number of reference plots,

at least in forest inventory applications where reliable

estimates of bias and variance are required (Magnussen

et al. 2009). However, the effects of sampling (number of

plots and their geographic distribution) on NN imputation

of species composition have not been investigated.
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Fig. 3. Biplot for CCA axes 1 and 2, showing explanatory variables (TPI, ALLUVIAL and SAND not shown) and species centroids (all trees, and shrubs

present on at least 5% of plots). Species scores are linear combinations of plot scores. See Table 2 for species codes. Spatial predictions for five circled

species are shown in Fig. 5.
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Axis 1
(red)

Axis 2
(green)

Axis 3 (blue)

Fig. 4. Map of dominant gradients (scores on CCA axes 1–3), shown as an RGB image composite. Each axis is symbolized with a different colour. Map

pixels with low scores on the axis are symbolized with low colour intensity and high scores with high colour intensity. When the three axes are

composited, areas with high scores on all three axes display as white (high saturation of all three colours). Axis 1 is most strongly correlated with

elevation and temperature, maritime to continental climate and slope; axis 2 with moisture (annual precipitation and growing season moisture stress);

axis 3 with summer precipitation.

Picea sitchensis 

Lithocarpus densiflorus 

Quercus garryana 

Tsuga mertensiana 

Juniperus occidentalis 

Fig. 5. Predicted presence of five tree species. Where species overlap, only the species listed first in the legend is visible. Grey areas are nonforest.
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When NN imputation is performed with k = 1, it is

critical that field plots sample the range of variation in

community composition present on the landscape, be-

cause imputed (mapped) values are limited to values

observed on the plots. Species combinations that occur in

nature but are not represented in the plot sample will not

be present in the imputed map; but conversely, neither

will the imputation contain novel communities that do

not occur in nature (i.e. errors). Many studies have

demonstrated that imputation with k = 1 preserves the

variance structure of the reference (plot) data. In addi-

tion, McRoberts et al. (2007) found that areal estimates

obtained using both probability-based and model-based

approaches were unbiased. Our results suggest that mod-

el-based GNN with k = 1 provides areal distributions of

community types (Ecological Systems) that are consistent

with sample-based estimates (Table 3), despite being

based on reference data that are not geographically

balanced. Although our sample size is quite large and

spans the range of variation in the study area, only the

FIA and CVS plots are on systematic grids, the CVS plots

are four times the sampling density of FIA, and federal

lands are much more densely sampled (by CVS and

Ecology plots) than nonfederal lands (FIA plots).

Diagnostics of NN model performance

In this paper we present several measures of predictive

performance that describe a single GNN imputation model,

but that address different aspects of model validity. We

highlight measures of species composition (species, com-

munity characteristics such as diversity, and community

types), as these have received relatively little attention in

the NN literature beyond the mapping of generalized forest

types (e.g. Thessler et al. 2008; Tomppo et al. 2009). We

hope that we have provided vegetation scientists, map

developers and map users with a basis for weighing the

strengths and limitations of NN imputation against other

available modelling methods and map products. We advise

caution in comparing our model accuracy for species pre-

sence/absence to other published models, because the

kappa statistic can be sensitive to species prevalence

(Franklin 2009). More research is needed to develop ways

of expressing imputed maps in terms of probability surfaces,

to enable calculation of metrics such as AUC that depend

on varying the threshold probability for classification.

Ultimately, choice of a modelling approach hinges on

objectives, scale (both space and time), organisms studied

and limitations and error structure of the modelling

approach relative to objectives. Perhaps the greatest

strength of NN models and maps is their utility for serving

multiple objectives – either simultaneously within a

single multi-faceted analysis, or for multiple users having

a variety of objectives. In cases where maps of species

composition are sought, we expect that users most often

will find advantages in imputed maps based on k = 1 due

to the maintenance of species co-occurrence within map

units. We provide a suite of model diagnostics that

evaluate various aspects of error and uncertainty for

many different vegetation attributes. The onus is left on

the user to evaluate model sufficiency and utility for each

particular application. However, in practice we have

observed that the general ‘‘look-and-feel’’ of the maps,

and how ecologically realistic they are perceived to be,

Fig. 6. Map of forest and woodland Ecological Systems in the western Cascade Mountains (same location as enlarged area in Fig. 4). See Table 3 for full

names of Ecological Systems. Only those Systems that occupy at least 1% of forest area are shown.
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often outweigh quantitative model diagnostics in the eyes

of many map users.

In NN maps based on k = 1, alpha diversity (species

richness) in the imputed maps faithfully reproduces that

observed in the plot sample, at both the local (plot and

map unit (pixel)) and regional (median values across all

plots and all pixels) scales. In our model, for any given

location (local scale), on average the list of (ten) woody

plant species was balanced between errors of omission

and commission. Across the entire model region, where

species prevalence was low and beta diversity was high,

there were more errors of omission than commission. In

terms of total forest area, the model on average predicted

slightly more area occupied by individual species than

expected from a systematic sample of plots. For the

classification of Ecological Systems, errors of omission

and commission were balanced, and differences in areal

representation between the plot sample and the imputed

map were quite small. This contrasts with our experience

in mapping Ecological Systems with a Random Forest

predictive model outside of the imputation context

(Grossmann et al. 2010).

Table 3. Accuracy for 24 forest Ecological Systems occupying at least 1% of forest area in the GNN model. Accuracy and fuzzy accuracy are from an

error matrix constructed from cross-validation. Producer’s accuracy is the percentage of plots of a given class that were correctly classified in the map.

User’s accuracy is the percentage of pixels of a given class that were correctly classified by plots located within it. Areal representation shows

percentage of forest area in the imputed map, and percentage difference is the amount of over- or under-representation compared to the sample-based

estimate from the FIA plots.

Ecological System� Accuracy Fuzzy accuracy Areal representation

Producer’s User’s Kappa Producer’s User’s Kappa % of map % diff.

NP QU 15.4 15.4 0.15 55.0 52.8 0.67 1.1 0.1

Cal Coast SESE3 29.5 30.0 0.29 57.5 55.8 0.65 1.0 0.7

CP JUOC 27.3 32.6 0.30 76.4 78.3 0.85 0.9 � 0.2

EC Mes Mont MixCon 47.8 48.1 0.47 71.0 69.0 0.75 2.0 � 0.4

KS LM Serp MixCon 32.8 31.9 0.32 50.3 49.5 0.57 0.6 0.4

MC DM MixCon 30.1 29.4 0.22 80.9 80.0 0.85 7.1 1.0

MC Mes MixCon 53.0 53.5 0.46 84.3 84.6 0.85 10.6 1.1

MC Low Mont QUKE-Con 37.8 37.5 0.35 79.1 78.5 0.84 3.0 0.5

MC ABSH 49.6 47.7 0.47 77.5 77.7 0.82 1.5 0.4

NP Dry PSME 11.7 12.7 0.10 53.9 53.4 0.66 3.2 � 1.6

NPHM PISI 57.3 51.4 0.54 85.1 82.1 0.87 1.9 0.3

NPM DM PSME-TSHE 32.7 33.3 0.24 91.2 90.0 0.93 11.5 � 2.1

NPM Mes Subalp Park 27.6 27.2 0.27 58.6 52.7 0.65 0.6 0.5

NPM MW PSME-TSHE 48.0 46.6 0.39 84.5 84.5 0.86 13.8 1.5

NP TSME 39.9 40.3 0.39 85.4 85.4 0.90 2.0 � 0.8

MC MixEv 56.8 55.7 0.53 82.8 81.9 0.85 5.4 1.0

NRM PIPO 63.4 63.3 0.61 80.6 81.9 0.83 9.5 0.2

RM Poor-site PICO 50.5 49.1 0.48 56.0 55.4 0.57 4.0 � 1.1

NP DM ABAM-TSHE-PSME 43.6 42.9 0.41 89.4 91.1 0.93 3.2 1.0

EC QU-PIPO 26.0 27.0 0.26 75.0 77.0 0.84 0.7 0.1

NP Broadleaf Landslide 7.5 9.1 0.08 73.9 75.0 0.84 1.5 � 0.8

NP Low MixHdwCon 23.5 24.1 0.20 79.3 78.8 0.86 6.9 1.0

NP Low Rip 5.2 7.5 0.06 46.8 48.6 0.63 0.9 � 0.2

All Ecological Systems 34.5 34.5 0.32 70.6 70.3 0.76 3.9 0.1

� NP QU = North Pacific Oak Woodland; Cal Coast SESE3 = California Coastal Redwood Forest; CP JUOC = Columbia Plateau Western Juniper Woodland and

Savanna; EC Mes Mont MixCon = East Cascades Mesic Montane Mixed-Conifer Forest and Woodland; KS LM Serp MixCon = Klamath-Siskiyou Lower

Montane Serpentine Mixed Conifer Woodland; MC DM MixCon = Mediterranean California Dry-Mesic Mixed Conifer Forest and Woodland; MC Mes

MixCon = Mediterranean California Mesic Mixed Conifer Forest and Woodland; MC Low Mont QUKE-Con = Mediterranean California Lower Montane Black

Oak-Conifer Forest and Woodland; MC ABSH = Mediterranean California Red Fir Forest; NP Dry PSME = North Pacific Dry Douglas-fir Forest and Woodland;

NPHM PISI = North Pacific Hypermaritime Sitka Spruce Forest; NPM DM PSME-TSHE = North Pacific Maritime Dry-Mesic Douglas-fir–Western Hemlock

Forest; NPM MW PSME-TSHE = North Pacific Maritime Mesic-Wet Douglas-fir–Western Hemlock Forest; NPM Mes Subalp Park = North Pacific Maritime

Mesic Subalpine Parkland; NP TSME = North Pacific Mountain Hemlock Forest; MC MixEv = Mediterranean California Mixed Evergreen Forest; NRM

PIPO = Northern Rocky Mountain Ponderosa Pine Woodland and Savanna; SN Subalp PICO = Sierra Nevada Subalpine Lodgepole Pine Forest and

Woodland; RM Poor-site PICO = Rocky Mountain Poor-Site Lodgepole Pine Forest; NP DM ABAM-TSHE-PSME = North Pacific Dry-Mesic Silver Fir–Western

Hemlock–Douglas-fir Forest; EC QU-PIPO = East Cascades Oak–Ponderosa Pine Forest and Woodland; NP Broadleaf Landslide = North Pacific Broadleaf

Landslide Forest and Shrubland; NP Low MixHdwCon = North Pacific Lowland Mixed Hardwood Conifer Forest and Woodland; NP Low Rip = North Pacific

Lowland Riparian Forest and Shrubland.

J.L. Ohmann et al. Extending plot data for landscape analysis

Journal of Vegetation Science

Doi: 10.1111/j.1654-1103.2010.01244.x. Published 2011. This article is a US Government work and is in the public domain in the USA. 673



Applications to landscape analysis and modelling

Several key features of (k = 1) NN imputation maps

distinguish them from alternative types of vegetation

maps, and offer advantages for certain applications in

landscape analysis and modelling. These key features are:

(1) maps of many individual species, which can be post-

classified into plant communities by the user; (2) species

assemblages within imputed map units that are ecologi-

cally realistic; and (3) unbiased areal representation of

species and communities, for both rare and common

entities. Therefore, in aggregate, modelled data across

large regions will contain the full diversity and range of

variability present in the plot sample. On the down side,

perhaps the most important limitation of k = 1 NN maps is

that prediction accuracy as assessed at the local scale

varies greatly among species and community types, and

may be lower for some species and types than can be

achieved with other methods. Much of this is a manifesta-

tion of ‘‘pure error’’ (Stage & Crookston 2007), which

reflects natural variability in plant communities. Never-

theless, as pointed out by Temesgen et al. (2003), NN

methods may perform well for complex stands with

multiple species. In addition, quality of the maps strongly

depends on a representative sample of plots, since k = 1

imputation will not interpolate nor extrapolate beyond

the data.

Areal representation often is not reported for published

studies (but see Riemann et al. 2010), yet can be critically

important to applications in natural resource manage-

ment and conservation planning. Landscapes commonly

contain a few community types that comprise most of the

area, but also many minor types that are of particular

interest or value or that require special management

attention. Modelling approaches vary in terms of ability

to predict abundant versus rare species or communities,

and improved accuracy for common types often is

achieved at the expense of representation of less common

types. Users may need to decide whether local accuracy or

regional representation is more important to their appli-

cation. Because map uncertainty varies widely among

vegetation attributes, and with the scale at which error is

assessed, this challenges modellers to communicate im-

plications to users (and for users to convey their needs to

modellers).

The attribution of each map unit with a suite of species

that are known to co-occur in nature is especially useful

for characterizing landscape conditions as input to land-

scape models where multi-species information is desired.

For example, a study in southwest Oregon modelled the

potential and actual distribution of sudden oak death in

order to prioritize landscapes for early detection and

eradication of disease outbreaks (Václavı́k et al. 2010).

GNN maps of 14 species of tree and shrub were used to

map the abundance and susceptibility of host vegetation

as one input to the invasive species distribution models.

Landscape scenario modelling is increasingly employed

to explore potential effects of alternative land manage-

ment policies, changes to natural and human-caused

disturbance regimes, a changing climate, or other as-

sumptions. For example, a study assessed potential ecolo-

gical and socioeconomic effects of forest policies over 100

years of change for a large multi-ownership region in

coastal Oregon (Spies et al. 2007). GNN maps of forest

composition and structure provided initial landscape con-

ditions for modelling (Ohmann et al. 2007). Another large

interagency project utilized GNN maps as the basis for

landscape state-and-transition models across Washington

and Oregon to compare likely outcomes of alternative

management strategies and disturbance regimes over one

to several centuries (Moeur et al. 2009). Results are being

used to guide natural resource planning by state and

federal agencies and conservation planning by private

organisations.

NN methods can be useful in characterizing large land-

scapes for conservation planning, as illustrated by recent

application of GNN to map Ecological Systems in eastern

Oregon and Washington for national conservation plan-

ning for the Gap Analysis Program (Kagan et al. 2008).

Conclusions

In conclusion, NN imputation is worth adding to the

vegetation scientist’s toolbox as one potential modelling

approach when spatial predictions (maps) are desired, or

for other ‘‘missing data’’ problems. Methods are applicable

to any geographic location where sufficient plot and

spatial data are available. Resulting models provide quan-

titative and spatial information on regional ecological

gradients, as well as vegetation maps that are useful for a

variety of applications. Although NN imputation has the

limitations of any static, correlative approach, resulting

maps of multiple species and plant community types are

especially useful for initializing large landscapes as input

to other models that portray landscape change over time

and space, under varying assumptions such as a changing

climate.
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