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This study investigated how lidar-derived vegetation indices, disturbance history from Landsat time series (LTS)
imagery, plot location accuracy, and plot size influenced accuracy of statistical spatial models (nearest-neighbor
imputationmaps) of forest vegetation composition and structure. Nearest-neighbor (NN) imputationmapswere
developed for 539,000 ha in the central Oregon Cascades, USA. Mapped explanatory data included tasseled-cap
indices and disturbance history metrics (year, magnitude, and duration of disturbance) from LTS imagery, lidar-
derived vegetation metrics, climate, topography, and soil parent material. Vegetation data from USDA Forest
Service forest inventory plots was summarized at two plot sizes (plot and subplot) and geographically located
with two levels of accuracy (standard and improved). Maps of vegetation composition and structure were
developed with the Gradient Nearest Neighbor (GNN) method of NN imputation using different combinations
of explanatory variables, plot spatial resolution, and plot positional accuracy. Lidar vegetation indices greatly
improved predictions of live tree structure, moderately improved predictions of snag density and down wood
volume, but did not consistently improve species predictions. LTS disturbance metrics improved predictions of
forest structure, but not to the degree of lidar indices, while also improving predictions ofmany species. Absence
of disturbance attribution (i.e. disturbance type such as fire or timber harvest) in LTS disturbance metrics may
have limited our ability to predict forest structure. Absence of corrected lidar intensity values may also have
lowered accuracy of snag and species predictions. However, LTS disturbance attribution and lidar corrected
intensity values may not be able to overcome fundamental limitations of remote sensing for predicting snags
and down wood that are obscured by the forest canopy. Improved GPS plot locations had little influence on
map accuracy, and we suggest under what conditions improved GPS plot locations may or may not improve
the accuracy of predictive maps that link remote sensing with forest inventory plots. Subplot NN imputation
maps had much lower accuracy compared to maps generated using response variables from larger whole
plots. No single map had optimal results for every mapped variable, suggesting map users and developers
need to prioritize what forest vegetation attributes are most important for any given map application.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Forestmanagement and conservation have grown increasingly com-
plex, involving consideration of a wide array of ecological, economic,
and societal values. Issues such as old growth conservation, wildlife
habitat management, timber extraction, forest restoration, fuel
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reduction, and wildfire risk assessment often involve multiple
interacting objectives, values, and threats (e.g. climate change,wildfires,
and insect outbreaks) spanning broad spatial scales and long ecological
gradients. In this complex policy and decision-making environment,
quantitative information is required about forest vegetation conditions
over large landscapes that is highly detailed with respect to multiple
vegetation attributes, and spatially complete (i.e. mapped) (Spies
et al., 2007).

Remotely sensed data are ideally suited tomeet the need for spatially
complete data about forests over large landscapes. Regional maps of
forest cover are often based on multispectral satellite imagery (Cohen,
Maiersperger, Spies, & Oetter, 2001; Hansen et al., 2003; Woodcock
et al., 1994). However, maps from satellite imagery alone cannot provide
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the level of detail about forest composition and structure often re-
quired for many forest management and research applications. Mea-
surements on field plot inventories often contain highly detailed
ecological data, but only at sampled locations so they lack complete
spatial coverage. As such, there is considerable interest in integrating
field plots with remotely sensed data to generate maps with the spa-
tial coverage of remotely sensed imagery and the ecological detail of
field plots (Ohmann & Gregory, 2002; Tomppo, 1991; Tomppo,
Goulding, & Katila, 1999).

One approach to integrating field plots and remotely sensed data is
nearest-neighbor (NN) imputation, which has been widely used in
forest inventory, monitoring, decision-support, and ecological research
(Gjertsen, 2007; Moeur et al., 2011; Ohmann et al., 2012; Pierce,
Ohmann, Wimberly, Gregory, & Fried, 2009; Reese et al., 2003; Spies
et al., 2007; Tomppo et al., 2008; Wilson, Lister, & Riemann, 2012).
Imputation is a method for filling in missing data by substituting values
from donor observations (Eskelson et al., 2009). In forestry applications,
imputation is used to estimate forest characteristics for large areas
where a set of mapped explanatory variables are available for the entire
spatial extent and these variables are related to a more detailed set of
response variables only available for a limited sample of the study
area. Response variables are usually measures of forest composition or
structure derived froma sample offield plots,whilemapped explanatory
variables can include multispectral satellite imagery and other spatially
complete datasets (i.e. climate, topography, etc.). In NN imputation,
either a single donor observation (plot) can be chosen to fill in a given
missing observation [k = 1], or multiple donor observations can be
averaged to fill in a given missing observation [k N 1]. A major strength
of NN imputation where k = 1 is the retention of the co-variance struc-
ture ofmultiple response variables, because each prediction links to a set
of response values within a single plot.

As noted above, NN imputation mapping often relies on satellite
imagery as mapped explanatory data (Ohmann & Gregory, 2002;
Wilson et al., 2012). In particular, Landsat imagery (individual spectral
bands and/or vegetation indices) is attractive for regional forestmapping
due to its low cost, global coverage, long temporal record, and large
scene-sizes, as well as spectral and spatial resolutions compatible with
characterizing vegetation attributes (Cohen & Goward, 2004). However,
Landsat and other passive optical sensors have limited sensitivity to
vertical and below-canopy vegetation structure (Lu, 2006), and the in-
formation content in Landsat imagery is known to saturate in forests
with high leaf area indices (Turner, Cohen, Kennedy, Fassnacht, &
Briggs, 1999). These limitations of Landsat and other passive optical
sensors pose problems for NN imputation mapping of forest attributes
such as stand density, snags, and down wood (Eskelson, Temesgen, &
Hagar, 2012; Pierce et al., 2009), which are important for carbon inven-
tory and assessment, wildland fuels, and wildlife habitat.

Compared to Landsat and other passive optical sensors, Light
Detection and Ranging (lidar) data can better represent the three-
dimensional structure of forest canopies, and has been widely
used to characterize vegetation cover and structure (see reviews
by Dubayah & Drake, 2000; Lefsky, Cohen, Parker, & Harding,
2002; Reutebuch, Andersen, & McGaughey, 2005). Additionally,
lidar does not suffer as much as Landsat imagery from declines in
sensitivity and accuracy in forests with high leaf area index. The
cost of lidar acquisition has declined dramatically over the past decade,
such that lidar is increasingly available for large landscapes. Lidar has
the potential to greatly improve NN imputationmaps of forest structural
attributes compared to maps developed using Landsat imagery or other
passive optical sensors. Recent studies using lidar have had promising re-
sults atmoderate spatial resolutions (≤30 m pixels) and relatively small
spatial extents (b60,000 ha); predicting presence/absence of snags and
understory attributes (Martinuzzi et al., 2009), and imputation mapping
of live tree structural attributes (Falkowski et al., 2010; Hudak,
Crookston, Evans, Hall, & Falkowski, 2008). However, no published
studies have determined if lidar can improve regional NN imputation
mapping of forest attributes such as snag and down wood abundance,
or species composition.

In addition to lidar data, advances utilizing the Landsat time series
(LTS) may also improve accuracy of NN imputation maps. With the
recent opening of the Landsat archive (Woodcock et al., 2008), there
has been a proliferation of research in multi-temporal change detection
and disturbancemapping (Huang et al., 2010; Kennedy, Yang, & Cohen,
2010; Masek et al., 2008). LTS disturbance metrics (such as time since,
magnitude of, and duration of disturbance) may improve the accuracy
of NN imputation indirectly, since many trends in forest composition
and structure are closely related to disturbance history (Franklin et al.,
2002; Oliver, 1980; Spies, 1991). This contrasts with lidar's direct char-
acterization of forest structure. LTS disturbance metrics have been
shown to have comparable predictive power to lidar for live basal area
and aboveground biomass, and superior predictive power for dead
basal area and aboveground biomass (Pflugmacher, Cohen, &
Kennedy, 2012), suggesting many accuracy improvements that lidar
can bring to imputation mapping might also be reached using LTS dis-
turbance metrics. LTS disturbance metrics also have the advantage of
complete spatial coverage and dramatically lower costs compared to
lidar. LTS disturbance metrics have been used in NN imputation map-
ping of forests (Ohmann & Gregory, 2002), but no published studies
have determined if LTS disturbance metrics can obtain predictions of
comparable accuracy to lidar within the context of regionalmultivariate
NN imputation maps of forest composition and structure. An additional
advantage of LTS imagery for NN imputation mapping is it permits
pixel-level normalization of multi-date images (Kennedy et al., 2010).
This is an important consideration when minimization of year-to-year
spectral variability and seamlessmulti-scene imagemosaics are desired
to relate to plot data collected over multiple years and across large
spatial extents (Ohmann, Gregory, & Roberts, 2013).

For NN imputation and othermethods linkingfield plots to remotely
sensed data, accuracy of plot locations and plot size are important con-
siderations. Studies relating lidar data to forest structure often do so
using field plots geo-referenced using GPS receivers thatmanufacturers
market as being capable of sub-meter accuracy when used under ideal
conditions (Falkowski et al., 2010; Hudak et al., 2008; Kane et al.,
2010; Pflugmacher et al., 2012). Although users and receiver manufac-
turers refer to GPS “accuracy”, it is important to note that the “accuracy”
statistic reported by GPS post-processing software is really “the preci-
sion of the solution” (i.e. a modeled estimate of geographic position),
and computed GPS positions can still deviate from true geographic po-
sitions even when very high precision (aka accuracy) is reported. The
accuracy of plot locations can be evaluated by comparing theGPS results
with the “true” location obtained using high-order survey methods, but
such comparisons are rarely made.

Unlike studies where research plots are geo-referenced using high
precision GPS receivers, regional NN imputationmapping typically relies
on existing plot networks such as theUSDA Forest Service's Forest Inven-
tory and Analysis Program (FIA) (Ohmann et al., 2012; Wilson et al.,
2012). A variety of methods (i.e. recreational grade GPS receivers, map
interpretation, and photo interpretation) have been used to determine
the geographic locations of FIA plots. FIA plots located with recreational
grade GPS receivers (the most common method used for locating FIA
plots) have positional accuracy averaging 5–20 m, but some plots can
have positional errors exceeding 20 m (Cooke, 2000; Hoppus & Lister,
2005). Additionally, FIA plots are comprised of multiple fixed-
radius subplots, and NN imputation can be conducted using either
larger plots (i.e. aggregates of subplots) or smaller individual
subplots (McRoberts, 2009). Simulations suggest accuracy of plot
locations and plot size can strongly impact the accuracy of lidar-
derived estimates of forest biomass (Frazer, Magnussen, Wulder, &
Niemann, 2011) and Landsat-derived estimates of forest area
(McRoberts, 2010), but the impacts of plot location accuracy and
plot size (in this study referring to whole plots versus individual sub-
plots) on prediction accuracy have not been examined within the
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context of NN imputation mapping over a large spatial extent using
lidar data or LTS disturbance metrics.

The primary objective of this study was to determine if lidar and LTS
disturbancemetrics can improve the accuracy of regional NN imputation
maps of forest vegetation composition and structure. An additional
objective of this study was to determine if plot location accuracy and
plot size influenced prediction accuracy of NN imputation maps.
2. Methods

2.1. Study area

The study was conducted on 539,300 ha in the central Oregon
Cascades, USA (Fig. 1). Forest landwithin the study area is administered
by theDeschutes National Forest. NN imputationmaps only apply to the
89% of the study area with at least 10% tree cover. The study spans large
climatic, physiographic, geologic, and vegetation gradients. Climate
varies from maritime in the west with wet cool winters and cool dry
summers; to more continental in the east with more variable tempera-
tures, shorter frost-free seasons, and greatly reduced precipitation.
Precipitation increases and temperature decreases with increasing ele-
vation. The physiography of the study area includes glaciated plateaus,
buttes, volcanic cones, mountains, and canyons. Geologically, the
study area contains lava flows, ash deposits, breccia, pyroclastic de-
posits, glacial deposits, and lacustrine and fluvial sediments. Soils
types are primarily andisols, inceptisols, and spodisols. Coniferous tree
species dominate the study area, with species composition generally as-
sociated with large-scale climatic and topographic gradients. Forest
zones within the study area range from high elevation timberline to
low elevation juniper (Juniperus occidentalis) woodlands. See Franklin
and Dyrness (1988), Orr, Orr, and Baldwin (1992), USDA-SCS (1993),
and USDA-NRCS (1995) for more detailed descriptions of the region.

Fire is the dominant natural disturbance in the study area. Historic
meanfire return intervals range from as low as 10 years in some juniper
Fig. 1. Study area in the central Oregon Cascades, USA.
woodlands and dry ponderosa pine forests, to over 500 years in subal-
pine forests at high elevations (Agee, 1993; Agee, 1994). Fire severity
is also highly variable within the study area, with higher severity fires
generally associated with higher elevations, higher fuel loadings, and
longer fire return intervals (Agee, 1993). Wildfire suppression and
changing climatic conditions have altered the fire regime in the region
over the past century (Everett, Schellhaas, Keenum, Spurbeck, &
Ohlson, 2000; Heyerdahl, Brubaker, & Agee, 2001; Littell, McKenzie,
Peterson, & Westerling, 2009; Wright & Agee, 2004). Despite wildfire
suppression efforts, several large fires have occurred within the study
area in the past decade. Timber harvesting has also been an important
disturbance agent in the study area over the past half century, with
harvest strategies shifting from clearcutting before 1970, transitioning
to overstory thinning from1970 to 1990, and an emphasis on understory
thinning and fuel reduction since approximately 1990. Finally, outbreaks
of insects such as the mountain pine beetle (Dendroctonus ponderosae)
and western spruce budworm (Choristoneura occidentalis) have resulted
in tree mortality in the region over the past three decades (Meigs,
Kennedy, & Cohen, 2011).
2.2. Forest composition and structure response data from field plots

Forest composition and structure data were collected between 2004
and 2009 on 251 plots in two forest inventories: the USDA Forest
Service's Forest Inventory and Analysis Program (FIA) and Region 6
Current Vegetation Survey (CVS). Although collected data, plot size,
number of subplots, and layout of subplots differ slightly between FIA
and CVS plots (Fig. 2, Supplemental Fig. S1), plot design and measure-
ment protocols are comparable between the two inventory programs
(Max et al., 1996; USFS, 2003). From the 251 candidate plots, 19 were
excluded because they had been disturbed since last measured, leaving
Fig. 2. Diagram showing plot design of FIA (black outline) and CVS (gray outline) plots.
Dashed grid overlain on plot diagram depicts a 3 × 3 window of 30 m pixels used as a
template to relatemapped explanatory variables to plots. The offset FIA plot (black outline
with grayfill) demonstrates anexampleof a spatialmismatchbetween a plot and the tem-
plate. For additional details on plot design and sampling, see Supplemental Fig. S1.
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232 plots for modeling. These modeling plots had not been disturbed
since field assessment, the majority (73%) had been assessed since
2007, and plots assessed between 2004 and 2006 were predominantly
inmature forests, all factors thatminimized potential impacts of tempo-
ral mismatches between plots and remotely sensed data. Twenty four
response variables were calculated from sampled plots; percent canopy
cover for the 12 most prevalent tree species (found on at least five
plots), and 12 variables for various live tree, snag, and down wood
structural attributes (Table 1).

Two sets of plot geographic locations (standard locations and im-
proved GPS locations) were used to relate plots and subplots to mapped
explanatory variables. Standard locations of plot centerswere collected at
time of plot assessment using a variety ofmethodswith varying accuracy
(recreational grade GPS, interpretation of digitized maps or aerial photo-
graphs). Improved GPS locations of plot centers were collected during
2010–2011 with a Trimble GeoXT GPS receiver, logging an average of
418 points (range of 146–2250 points) for each plot location. Improved
GPS locationswere differentially corrected and had an average horizontal
precision of solution of ±0.91 m. Euclidean horizontal distance between
standard and improved plot locations averaged 18.18 m (14.33–22.02 m
95% CI), but 11, six, and three plots had distances greater than 30, 60, and
90 m, respectively. See the Supplemental Figure S2 for additional infor-
mation on differences between standard and improved GPS plot
locations.

To examine the role of plot size in NN imputation accuracy, the 24
response variables were calculated at both the plot scale (aggregate of
all subplots) and subplot scale (only the center subplot of each plot).
Using only center subplots maintained the same sample number as
whole plots for model comparisons, while avoiding fine-scale spatial
autocorrelation in response and explanatory variables that could con-
found analyses if all subplots within a plot were treated as independent
sample units. Species percent cover variables were arcsine square root
transformed and structural variables were standardized by their ranges.
A dummyvariablewith a value equal to the smallest value for any trans-
formed response variable on a plot or center subplotwas added to allow
Table 1
Codes and descriptions of species and structural response variables, along with species prevale

Code Species

ABAM Abies amabilis
ABGRC Abies grandis and Abies concolor*
ABPRSH Abies procera and Abies magnifica var. shastensisnn*
JUOC Juniperus occidentalis
PIAL Pinus albicaulis
PICO Pinus contorta
PIEN Picea engelmannii
PILA Pinus lambertiana
PIMO3 Pinus monticola
PIPO Pinus ponderosa
PSME Pseudotsuga menziesii
TSME Tsuga mertensiana

Code Structural variable

BA Basal area (m3/ha) of all live trees ≥2.5 cm dbh
QMD Quadratic mean diameter (cm) of dominant and codominant tre
HCB Height (m) to crown base
TPH_3_25 Density (trees/ha) of live trees 2.5–25 cm dbh (trees/ha)
TPH_25_50 Density (trees/ha) of live trees 25–50 cm dbh
TPH_GE_50 Density (trees/ha) of live trees ≥50 cm dbh
STPH_12_25 Density (snags/ha) of snags 2.5–25 cm dbh
STPH_25_50 Density (snags/ha) of snags 25–50 cm dbh
STPH_GE_50 Density (snags/ha) of snags ≥50 cm dbh
DVPH_12_25 Volume (m3/ha) of down wood 12.5–25 cm diameter at large e
DVPH_25_50 Volume (m3/ha) of down wood 25–50 cm diameter at large end
DVPH_GE_50 Volume (m3/ha) of down wood 25–50 cm diameter at large end

Note: Species followed by * are lumped together due to difficulties distinguishing these specie
inclusion of plots on which no live trees, snags, or down wood were
tallied.

2.3. Mapped explanatory data

Mapped explanatory variables (Table 2) included climate vari-
ables (1981–2010 normals) derived from the Parameter-Elevation
Regressions on Independent Slopes Model (PRISM, Daly et al.,
2008), topographic and solar radiation variables calculated from
lidar-derived digital elevation models (DEMs), regional geologic in-
formation, geographic coordinates (easting and northing), lidar-
derived vegetation metrics, as well as tasseled cap indices (Crist &
Cicone, 1984; Kauth & Thomas, 1976) and disturbance metrics de-
rived from LTS mosaics developed using the LandTrendr algorithms
(Kennedy et al., 2010). All mapped explanatory data were generated
at or resampled to 30 m pixel resolution.

Airborne discrete return lidar data was collected by Watershed
Sciences, Inc. (Corvallis, Oregon USA) during the fall and summer
of 2009 and 2010. Lidar was collected from 900 to 1300 m above
ground level by fixed wing aircraft equipped with Leica ALS50
Phase II and ALS60 laser scanners. Laser scanners had a 105 kHz
pulse rate, scan angle of ±14° from nadir, and 50% scan swath over-
lap. Average pulse return density exceeded 8/m2. A 1 m resolution
DEM was developed from the lidar point cloud by Watershed Sci-
ences Inc. using TerraScan software (Soininen, 2004) following
methods previously described in the electronic supplemental mate-
rial of Zald, Spies, Huso, and Gatziolis (2012). The DEM was
resampled to 30 m, from which topographic and solar radiation ex-
planatory variables were derived. Metrics of vegetation structure
were derived from the lidar point cloud using the grid metrics func-
tion in FUSION/LDV (McGaughey, 2013). The grid metrics function
generates over 50 gridded variables characterizing vegetation
height, cover, vertical distribution, and intensity. The primary pur-
pose of this study was to assess the predictive accuracy of NN impu-
tation using lidar, not to assess all the possible combinations of lidar
nce, structural mean and range, by plots and subplots.

Prevalence (percent)

Plot Subplot

2.2 1.7
23.7 14.2
3.4 2.2
4.3 2.2
5.2 1.7

61.6 48.7
2.6 2.2
5.2 2.2

10.3 4.3
70.7 56.5
12.9 8.6
15.1 11.6

Mean (range)

Plot Subplot

21.65 (0–76.19) 21.35 (0–82.24)
es 30.71 (0–87.38) 34.11 (0–124.97)

4.56 (0–29.47) 4.36 (0–23.77)
926.96 (0–7224.44) 785.17 (0–6806.04)
86.61 (0–409.22) 89.26 (0–416.38)
16.62 (0–127.97) 16.74 (0–188.1)
37.44 (0–470.34) 31.28 (0–475.87)
18.97 (0–227.59) 21.74 (0–237.93)
2.66 (0–59.43) 3.62 (0–138.72)

nd and ≥3 m long 14.47 (0–109.48) 14.07 (0–309.2)
and ≥3 m long 29.43 (0–286.54) 32.03 (0–681.15)
and ≥3 m long 19.18 (0–489.43) 20.25 (0–962.22)

s in the field.



Table 2
Descriptions of mapped explanatory variables used in GNN models.

Variable group Variable description

Climate Mean annual precipitation (natural logarithm, mm) Mean annual temperature (°C)
Mean maximum temperature of hottest month (August) (°C)
Percentage of annual precipitation falling during the growing season (June - August)
Mean minimum temperature of coldest month (December) (°C)
Growing season moisture stress, the ratio of mean temperature (°C) to precipiation (natural logarithm, mm), May - September

Topography Elevation (m)
Cosine transformation of aspect (degrees)
Weighted cumulative potential relative radiation during the growing season (Pierce, Lookingbill, & Urban, 2005)
Slope (%)
Topographic position index, calculated as the difference between a cell's elevation and the mean elevation of cells within a 150-m
radius window
Topographic position index, calculated as above but with a 450-m radius window

Parent material Total ash deposition (feet), primarily from Mt. Mazama in the eastern Cascades (unpubl. data from Mike Simpson)
Ice transported deposits (categorical)
Pyroclastic deposits (categorical)
Pumice desposits (categorical)

Landsat time series Brightness axis from tasseled cap transformation
Greenness axis from tasseled cap transformation
Wetness axis from tasseled cap transformation

Landsat time series Years since disturbance, from multitemporal Landat TM analysis
Disturbance metrics Magnitude of disturbance (percent change in canopy cover), from multitemporal Landsat TM analysis

Duration of disturbance (years), from multitemporal Landsat TM analysis
Lidar Height (m) of 95th percentile of vegetation height returns

Height (m) of average vegetation height returns
Canopy cover above 2-m (percent), calculated as the proportion of first returns greater than a lower height limit of 2-m above
ground in the digital terrian model
Standard deviation of vegetation height (m)

Location Universal Transverse Mercator easting (m)
Universal Transverse Mercator northing (m)
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vegetation metrics. Within this context, we focused on a small num-
ber of vegetation metrics characterizing vegetation height, cover,
and vertical distribution (Table 2) that have consistently been
found to predict many attributes of forest structure in the Pacific
Northwest region (Falkowski et al., 2010; Hudak et al., 2008; Kane
et al., 2010).

Tasseled cap indices and disturbance metrics were calculated from
LTS mosaics (WRS-2 44/30, 45/29, and 45/30) using the LandTrendr
segmentation algorithms (Kennedy et al., 2010). Using images that are
cloud-free, geometrically corrected, and radiometrically normalized,
the LandTrendr algorithms identify time segments for each pixel that
describe sequences of disturbance and growth, and minimize annual
variability from differences in sun angle, phenology, and atmospheric
effects. LandTrendr algorithms also accomplish multi-year normaliza-
tion at the pixel level, enabling mosaicking across large regions with
less pronounced scene boundaries than associated with traditional nor-
malization. From the LandTrendr data we generated mosaics of tempo-
rally smoothed tasseled cap indices, as well as disturbance history
Table 3
Model names and combinations of mapped explanatory variables, response data, and plot coo

1 2 3 4

Plt-Std Plt-lidar Plt-disturb Plt-lidar-distur

Mapped explanatory variable groups
Climate † † † †

Topography † † † †

Parent material † † † †

LTS fitted tasseled cap † † † †

LTS disturbance metrics † †

Lidar vegetation metrics † †

Field plot type
Plot † † † †

Subplot

Plot coordinates
Standard † † † †

Improved GPS

† denotes mapped explanatory variable group, field plot type (plot versus subplot), and type o
metrics from 1985 to 2010 characterizing years since disturbance (rela-
tive to 2010), magnitude of disturbance (as change in canopy cover),
and duration of disturbance (in years).

To assign values from mapped explanatory variables to plots, each
plot was represented as a template of pixels configured to approximate
that plot's layout on the ground (Fig. 2). Whole plots were represented
by a 3 × 3 template of 30 m pixels, while subplots were represented by
a single 30 m pixel. Values of explanatory variables were extracted for
templates representing whole plots and subplots, centered on both
standard and improvedGPS plot locations. Values of tasseled cap indices
were extracted from images corresponding to the year each plot was
measured.

2.4. Nearest-neighbor imputation mapping

Forest composition and structure were mapped across the study
area using Gradient Nearest-Neighbor (GNN) imputation as described
by Ohmann and Gregory (2002) and Ohmann, Gregory, Henderson,
rdinates by model.

5 6 7

b Plt-lidar-disturb-GPS Subplt-lidar-disturb Subplt-lidar-disturb-GPS

† † †

† † †

† † †

† † †

† † †

† † †

†

† †

†

† †

f plot coordinates (standard versus improved GPS) used in each model.
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andRoberts (2011). SevenGNNmapswere developed to quantify the in-
fluence of lidar and LTS disturbancemetrics, plot locations (standard ver-
sus improved), and plot size (plot versus subplot) on prediction accuracy
(Table 3).Map 1 (Plt-Std) is also referred to as the standardGNNmapbe-
cause its combination of explanatory variables, use of whole plots, and
standard plot locations has been widely applied throughout the Pacific
Northwest region (Moeur et al., 2011; Ohmann & Gregory, 2002;
Ohmann et al., 2012). Compared to the standard GNNmap,maps 2–7 in-
clude lidar vegetation and/or LTS disturbancemetrics, response data cal-
culated at different plot sizes (plot versus subplot), and explanatory data
extracted for standard versus improved GPS plot locations.

Each map of forest composition and structure was created by first
quantifying the relationship of multivariate response variables to
mapped explanatory variables using canonical correspondence analysis
(CCA, ter Braak, 1986). CCA models were created using the R package
vegan (Oksanen et al., 2012; R Core Team, 2012). For species composi-
tion maps, all species from Table 1 were included as response variables
in CCA. For structure models, we first included all structural response
variables in CCA models, but found that using only live structural re-
sponse variables in CCA (and predicting snags and downwood as ancil-
lary variables) resulted in the highest prediction accuracy for all
structure response variables. Neighbor selection in GNN was based on
weighted Euclidean distance within CCA multivariate gradient space
using the R package yaImpute (Crookston & Finley, 2008). GNNwas im-
plemented by assigning a single nearest-neighbor plot to each map
pixel using the R package SDMap (Henderson unpublished, available
upon request). All GNN maps were generated at 30 m resolution.

2.5. Accuracy assessment

Predictions of forest composition and structure were generated
using a leave-one-out cross validation approach. From each GNN
map, predicted response variables were extracted from map pixels
associated with plot locations, using a 3 × 3 template of 30 m pixels
for maps developed using plot-level response data, and a single 30 m
pixel for maps developed using subplot-level response data. Leave-
one-out cross validation was implemented using the R package
SDMap. A variety of metrics to assess prediction accuracy were
calculated using plot observations and cross-validated predictions.

To evaluate predictions of each structure variable in each map, we
calculated r2 and the normalized root mean squared difference
(nRMSD, RMSE divided by the range of observed values). Normalization
of RMSE allows for better comparison of models across structure vari-
ables with widely different data ranges and r2 values. We also followed
many of the protocols suggested by Riemann, Wilson, Lister, and Parks
(2010) to assess differences in data distributions and spatial patterns
of GNN predictions compared to plot-based observations. The bias and
random error of predicted structure variables were quantified by calcu-
lating the systematic and unsystematic agreement coefficients (ACsys

and ACuns) following Ji and Gallo (2006). ACsys represents the difference
between observed and predicted values that can be predicted by a sim-
ple linear model (bias from the 1:1 line), and ACuns represents differ-
ences which appear to be random. Differences in observed versus
predicted data distributions were quantified by calculating empirical
cumulative distribution functions (ECDFs) for observed and predicted
structure variables, and the Kolmogorov-Smirnov statistic (KS, Lopes,
Reid, & Hobson, 2007) was calculated to assess the maximum distance
between observed and predicted ECDF values. We used hexagons with
a 12.5 km spacing (13,532 ha per hexagon) to assess the spatial pat-
terns of prediction accuracy for structure variables. This hexagon size
resulted in 57 hexagons averaging 4 plots per hexagon, the minimum
number of plots used by FIA to define strata for estimation (Scott
et al., 2005). Observed and predicted values for each structure variable
were averaged for plots contained in each hexagon. Maps were then
generated to visualizemeanobserved values and percent relative differ-
ence between observed and predicted values by hexagon. The relatively
small number of plots and study area size precluded the use of larger
hexagons or calculation of prediction confidence intervals by hexagon
as suggested by Riemann et al. (2010).

Species predictions were evaluated as binary values (presence/
absence) using the True Skill Statistic (TSS, Allouche, Tsoar, & Kadmon,
2006), as well as sensitivity and specificity (Fielding & Bell, 1997) for
each species in each map. Sensitivity (also known as the true positive
rate) was calculated as the number of true positives divided by the
sum of true positives and false negatives; while specificity (also known
as the true negative rate) was calculated as the number of true negatives
divided by the sum of true negatives and false positives. Finally, the areal
representation of each species in eachmapwas calculated by comparing
the proportion of mapped area each species was predicted to occupy in
relation to the proportion of plots each species was observed in from
the systematic plot sample.

3. Results

3.1. Vegetation structure

Prediction accuracy varied by structure variable type (i.e. live trees,
snag, and down wood), inclusion or exclusion of lidar and LTS distur-
bance explanatory variables, and use of plot versus subplot response
data (Fig. 3). R2 ranged from0.0 to 0.77,with the highest values for struc-
ture variables that included live trees (BA, QMD, and HCB), intermediate
values for live tree density variables (TPH_3_25, TPH_25_50, and
TPH_GE_50), lower values for snag density variables (STPH_12_25,
STPH_25_50, and STPH_GE_50), and the lowest values (r2 b 0.28) for
down wood variables (DVPH_12_25, DVPH_25_50, and DVPH_GE_50).
Inclusion of lidar explanatory variables consistently improved predic-
tions of all structure variables. Inclusion of LTS disturbance metrics also
improved predictions of all structure variables, although not as much
as inclusion of lidar. The combination of lidar and LTS disturbance met-
rics (GNN maps Plt-lidar-disturb and Plt-lidar-disturb-GPS) improved
r2 values for 7 of the 12 structure variables compared to the map devel-
opedwith only lidar. However, r2 values for snags and downwoodwere
on average, highest for maps including both lidar and LTS disturbance
metrics. Subplot-based maps exhibited consistently lower r2 values.
The plot-based map using improved GPS plot locations (Plt-lidar-dis-
turb-GPS) improved r2 values for only 5 of the 12 structure variables
compared to the map using the same explanatory variables but with
standard plot locations (Plt-lidar-disturb), and the subplot-based map
using improved GPS plot locations (Subplt-lidar-disturb-GPS) also had
higher r2 values for only 5 of the 12 structure variables compared to
the map using the same explanatory variables and standard plot loca-
tions (Subplt-lidar-disturb).

Patterns in model-strength illustrated by nRMSD were similar to
those shown by r2; except values are reversed (lower nRMSD is better).
Values for nRMSD ranged from 0.08 to 0.30. For all structure variables,
maps using lidar explanatory variables had the lowest nRMSD, and the
combination Lidar and LTS disturbance explanatory variables lowered
nRSMD for 6 of the 12 structure variables. Values for nRSMD were
higher for subplot-based maps, except for down wood response vari-
ables. Improved plot locationsdid not improve nRMSDvalues compared
to maps using standard plot locations.

ACsys ranged from0.26 to 1.0, were consistently high (N0.92) among
maps for all live tree variables, but varied for snag densities and down
wood volumes. For snag and down wood predictions, there were few
trends for ACsys values in relation to map type. ACuns values ranged
from−14.08 to 0.76, and had higher values for live tree variables, inter-
mediate values for snags, and lower values for downwood. ACuns values
were consistently higher for maps that included lidar explanatory vari-
ables, while the addition of LTS disturbance variables did not improve
ACuns values over maps using only lidar variables. Subplot-based maps
had the lowest ACuns values for 8 of 12 structure variables. Improved
GPS plot locations did not influence ACuns values. KS values had a



Fig. 3.Accuracymetrics (r2, nRSMD, ACsys, ACuns, and KS) for each structural variable andGNNmap type. See Table 1 for structural variable descriptions and Table 3 for descriptions of GNN
map types.
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narrow range of 0.01 to 0.11, with no consistent trends between
variables or map types.

Hexagon maps of relative differences between predicted and ob-
served structure variables displayed consistent trends in relation to
specific structure variables, map types, and geographic location
(Fig. 4, Supplemental Fig. S3–S13). For most live tree structure vari-
ables, maps developed using lidar and/or LTS disturbance metrics had
more hexagons with low (−25 to 25%) relative differences between
map predictions and plot-based observations. However, whether the
“best” map included lidar, LTS disturbance metrics, or both varied by
the specific live tree structure variable. For live structure variables,
subplot-based maps had more hexagons with high relative differences,
and the use of improved GPS plot locations did not influence relative
differences. In contrast to most live structure variables, snag and large
down wood variables had the lowest relative differences for subplot-
based maps. However, higher accuracy of subplot-based maps for
snag and downwood variables in this hexagon-basedmetricmay result
from strong geographic clustering of very low snag density and low
down wood volume in the eastern portion of the study area. As with
live tree variables, use of improved GPS plot locations did not influence
relative differences for snag density and down wood volume.

3.2. Species composition

Accuracy of species presence/absence predictions varied by map
type and species, but there were consistent patterns primarily related
to the inclusion or exclusion of lidar and LTS disturbance variables, as
well as the use of plot versus subplot response data (Fig. 5). TSS values
ranged from−0.03 to 0.75, and were generally higher for more preva-
lent species. Maps using LTS disturbance metrics as explanatory vari-
ables had the highest TSS values for 8 of the 12 species. TSS values
were consistently lower for subplot-based maps, and this pattern was
most pronounced for the least prevalent species. The plot-based map
using improved GPS plot locations improved TSS values for only 5 of
12 species compared to the map using the same explanatory variables
and standard locations. Improved GPS locations had a similar result
for subplot-based maps, with improved TSS values for only 4 of 12
species compared to the subplot-based maps using standard locations.

Sensitivity displayed trends similar to TSS, varying by model and
species, ranging from 0.0 to 0.93, with higher sensitivity for more prev-
alent species.Maps using LTS disturbancemetrics had higher sensitivity
for eight of the twelve species (Fig. 5). The plot-based map using im-
proved GPS locations improved sensitivity for only 5 of the 12 species
compared to the plot-based map using the same explanatory variables
and standard plot locations. The subplot-based map using improved
GPS plot locations only improved sensitivity for 2 of the 12 species com-
pared to the subplot-based map using the same explanatory variables
and standard plot locations. Specificity was generally higher than TSS
or sensitivity, ranging from 0.61 to 1.0. Specificity was associated
more with species prevalence (higher specificity with lower species
prevalence) than with map type. Unlike TSS and sensitivity, specificity
did not display consistent trends between plot-based versus subplot-



Fig. 4.Geographic distribution of relative percent difference between observed andpredicted quadraticmean diameter (QMD) at the 12.5 kmhexagon scale. See Table 3 for descriptions of
GNN map types. See the Supplemental Fig. S3–S13 for maps of relative percent difference for other structural variables listed in Table 1.
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basedmaps ormaps using standard versus improved GPS plot locations.
While specificity did vary among maps (especially for species with
moderate to high prevalence), there were no consistently high- or
low-performing maps across a plurality of species.

Difference of areal representation betweenmappredictions and sam-
pled plots varied largely by species and species prevalence rather than
map type (Fig. 5). The most prevalent species (Pinus ponderosa, Pinus
contorta, and Abies grandis/concolor) had the narrowest range of differ-
ence of areal representation (−9.83% to 4.22%), suggesting these species
are least sensitive to map type and most accurately predicted. Species
with moderate prevalence (Tsuga mertensiana, Pseudotsuga menziesii,
and Pinus monticola) had an increased range of difference of areal repre-
sentation (−27.27% to 22.93%), while the remaining species with low
prevalence had the widest range of difference of areal representation
(−50.56% to 40.98%). Most species tended to be either over-predicted
or under-predicted across allmap types. Subplot-basedmaps consistent-
ly over- or under-predicted mapped area compared to plot-based maps.
Otherwise, trends in areal representation did not appear to be associated
with the inclusion or exclusion of lidar, LTS disturbance metrics, or
improved GPS plot locations. Aerial representation is a regional accuracy
assessment, whereas all othermetrics (except for KS statistic) examining
species composition focused on plot scale accuracy. Results of regional
and plot scale accuracy assessments suggest lidar and LTS disturbance
metrics improved plot scale accuracy, but not regional accuracy.

4. Discussion

4.1. Influence of lidar-derived vegetation metrics on prediction accuracy

Inclusion of lidar-derived vegetation metrics greatly improved NN
predictions of live tree structural attributes, moderately improved pre-
dictions of snag densities and down wood volume, but had inconsistent
effects on species predictions. Large improvements in live structure pre-
dictions using lidarwere not surprising, as other studies have found lidar
can successfully predict forest structure variables such as basal area and
stem density with r2 values of 0.86–0.95 (Holmgren, 2004; Hudak et al.,
2006;Means et al., 2000; Næsset, 2002). These studies outperformedNN
imputation using lidar in this study (r2 = 0.77 for basal area, 0.53–0.67
for stem densities in different size classes). However, there are many
confounding factors that complicate direct comparisons with our work.
These other studies were situated in relatively small spatial extents in
different forest types, used fixed-radius plots, often used many lidar-



Fig. 5. Accuracy metrics (true skill statistic, sensitivity, specificity, and areal representation) for each species (ordered in declining prevalence from left to right) and GNN map type. See
Table 1 for composition variable descriptions and prevalence values, and Table 3 for descriptions of GNN map types.
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derived explanatory variables, and predicted individual univariate
response variables. In contrast, our study was conducted over a larger
regional spatial extent, used inventory plots of different radii, used rela-
tively few lidar-derived explanatory variables, and generated multivari-
ate predictions of response variables. Furthermore, differences in how
lidar data is spatially related to plots may also confound direct compari-
sons between out study and prior research. Despite limitations for direct
comparison, our study demonstrates that inclusion of relatively few
lidar-derived vegetationmetrics can greatly improve simultaneous,mul-
tivariate predictions of live forest structural attributeswithin the context
of NN imputationmapping. The primary benefit of NN imputation when
using a single nearest neighbor [k = 1] is the conservation of plot-level
covariance among multiple response variables, resulting in ecologically
realistic co-occurrence of multiple response variables. However, conser-
vation of plot-level covariance may come at the cost of lower prediction
accuracy for individual response variables compared to univariate statis-
tical approaches (Henderson, Ohmann, Gregory, Roberts, & Zald, in
press). In spite of this potential tradeoff, this study clearly demonstrates
that inclusion of lidar data can greatly improve regional NN imputation
mapping of live tree forest structure.

Inclusion of lidar-derived vegetation metrics moderately improved
predictions of snag densities. Martinuzzi et al. (2009) reported high accu-
racy using lidar tomake categorical predictions of snag presence/absence,
and Kim et al. (2009) had success using lidar to distinguish between
live tree and snag biomass, but it is difficult to directly compare these
results to continuous predictions of snag densities in our study.
Lidar's application to snag prediction is fundamentally limited by
the small reflective surface area of snags compared to the live forest
canopy, which is further complicated by the high canopy cover
across parts of this study. Additionally, the absence of lidar intensity
values may limit our ability to predict snags. Lidar intensity values have
proven useful in predicting snags (Kim et al., 2009; Pflugmacher et al.,
2012), but use of intensity values often requires corrections for differ-
ences in receiver gain and range that occur during data acquisition. Un-
fortunately, corrected intensity values were not available for this study,
and visual inspection of gridded intensity values revealed significant
terrain effects and flight line patternswhich precluded the use of uncor-
rected intensity values.

Predictions of down wood volume also improved with inclusion
of lidar, but were still low compared to live tree and snag attributes.
Low accuracy for down wood predictions is consistent with both
high sampling error associated with plot measurements, as well as
difficulties in detecting and measuring down wood underneath forest
canopies using remote sensing. FIA and CVS plots use relatively short
transects nested within subplots for measuring down wood (Max
et al., 1996; USFS, 2003), and short transects can increase sampling
error of down wood (Harmon & Sexton, 1996; Woldendorp,
Keenan, Barry, & Spencer, 2004). Other studies have used lidar to
achieve higher prediction accuracies for down wood by focusing on
intensity values, near-ground point filtering, and object-based
image analysis (Blanchard, Jakubowski, & Kelly, 2011; Pesonen,
Maltamo, Eerikäinen, & Packalèn, 2008). As previously mentioned,
corrected intensity values were not available for this study. Additionally,
the object-based image analysis approach used by Blanchard et al.
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(2011)was conducted in disturbed forests with low canopy cover, and it
is doubtful this approachwould be effective in the closed-canopy forests
within our study area.

Previous studies using lidar to detect and/or measure down wood
have found that using live trees as explanatory variables did not im-
prove predictions. Pesonen et al. (2008) found that the inclusion of
live trees as explanatory variables did not improve lidar-based down
wood predictions, while Blanchard et al. (2011) cite low correlations
between live trees and downwood as evidence live trees are not impor-
tant predictors of down wood. However, these studies examined down
wood as univariate response variables, rather than as part of a co-
varying suite of forest structural attributes. In our plot data, down
wood volumewas correlatedwithmany live tree and snag variables, al-
beit at relatively low levels (Supplemental Table S1).Within the context
of NN imputationmapping in our studywhere k = 1, it appears that by
improving predictions of live tree structure, including lidar explanatory
data also improved down wood (and snag) predictions due to the co-
variance between live and dead structure variables.

In contrast to structural predictions, lidar did not improve predic-
tions of species presence/absence. On one hand, this is unsurprising be-
cause species distributions are primarily driven by large-scale gradients
of climate, topography, and soil parent materials (Ohmann & Gregory,
2002; Ohmann et al., 2011). On the other hand, finer-scale patterns of
species composition do occur in relation to succession over time after
disturbance in western Oregon (Schoonmaker & McKee, 1988; Spies,
1991). We expected lidar to contain information pertinent to these
finer-scale patterns because it has been shown to characterize structural
complexity associated with succession and stand development (Kane
et al., 2010). However, in this study the linkages between stand struc-
ture and species composition may not have been strong enough to im-
prove species-level predictions. One possible explanation for this
shortcoming is the wide range of forest types, structural conditions,
and disturbance histories found in the study area, whichmay not be ad-
equately characterized by the lidar variables used or by our plot sample.
As with snag predictions, lidar intensity values may improve species
predictions (Donoghue, Watt, Cox, & Wilson, 2007).

4.2. Influence of LTS disturbance metrics on prediction accuracy

Inclusion of LTS disturbance metrics consistently improved predic-
tions of structural attributes, although less than the inclusion of lidar
variables. This is in contrast to the findings of Pflugmacher et al.
(2012), who found that LTS metrics of disturbance and recovery pre-
dicted live biomass almost as well as lidar (r2 of 0.80 versus 0.88), and
outperformed lidar in predicting dead biomass (r2 of 0.73 versus
0.23). Complicating direct comparisons, Pflugmacher et al. (2012)
used a different field plot design, predicted different structure variables,
and predicted them as univariate response variables. However, a likely
explanation for the modest improvements in prediction accuracy with
LTS disturbancemetrics in our study is the absence of disturbance attri-
bution (i.e. identification of disturbance type). LTS disturbance metrics
used in this study (magnitude, duration, and years since disturbance)
can be very similar for different types of disturbance agents, despite
having strikingly different impacts on forest structure. For example, a
clearcut and a high severity wildfire may both be high magnitude,
short duration disturbance events. However, a clearcut removes most
trees, resulting in little snag and down wood recruitment; while wild-
fire converts live trees to snags, which become down wood over time
(Dunn & Bailey, 2012; Franklin et al., 2002).

Although disturbances such as clearcuts and wildfire may initially
have distinct spectral signatures, additional information such as distur-
bance size, shape, and distribution are often required to distinguish be-
tween them (Cohen et al., 2002). Further complicating the relationship
of spectral reflectance to disturbance types in this study, plots are often
sampled many years after a disturbance, and are matched to Landsat
imagery by their sampling date. Plots surveyed several years after a
disturbance may contain recovering forests, so Landsat imagery will re-
flect the young trees rather than the initial disturbance. Put another
way, a 10-year old fire may closely resemble a 10-year old clearcut in
Landsat imagery even though they may differ greatly in structural di-
mensions like downed wood and snags. Within the context of this
study, the absence of disturbance attribution means plots that have
been logged or burnedmaybepositioned close to each other in CCAgra-
dient space, resulting in similar likelihoods of being chosen as nearest
neighbors for either type of disturbance, thereby lowering prediction
accuracy of structural attributes. LTS disturbance metrics were only re-
cently developed for our study area, and disturbance attribution has
yet to be completed and validated. However, the work of Pflugmacher
et al. (2012) suggests incorporating LTS disturbance attribution into fu-
ture NN imputation may significantly improve predictions of forest
structure. It should be noted that, even in the absence of disturbance at-
tribution, LTS disturbance metrics moderately improved all structural
predictions including snag density and down wood volume. Improve-
ments in snag and down wood predictions may simply result from co-
variance with live tree structure, but it may also suggest LTS
disturbance history can be important in predicting some structure var-
iables even without knowledge of the specific disturbance agent.

Inclusion of LTS disturbance metrics improved prediction accuracy
for many species. These included a fire-adapted species (Pinus contorta)
associated withmore recent and higher magnitude disturbances, shade-
intolerant and shade-intermediate species (J. occidentalis, Pinus albicaulis,
Pinus lambertiana, P. monticola, P. ponderosa, and P. menziesii) that often
establish after disturbances, and a shade-tolerant species (Abies
amabilis) that was negatively associated with disturbance (Supple-
mental Fig. S14). As previously mentioned, species distributions are
driven by broad-scale bioclimatic gradients, as well as local-scale
successional gradients over time. The inclusion of LTS disturbance
metrics appeared to moderately improve predictions of many spe-
cies by providing information related to successional conditions,
even though the disturbance type is not known. Typically, species
distribution models (SDMs) focus more on the bioclimatic and/or
physiographic niche (Elith & Leathwick, 2009; Guisan & Thuiller,
2005; Iverson & Prasad, 1998) than on the importance of disturbance
in determining species distributions. As LTS disturbance metrics be-
come widely available, their incorporation into SDMs has the poten-
tial to improve SDM predictions at regional to global spatial extents.
Furthermore, predicting distributions of multiple species
simultaneously using NN imputation has the benefit of generating
more ecologically realistic maps of species diversity and community
composition (Henderson et al., in press; Ohmann et al., 2011).

4.3. Influence of improved plot locations on prediction accuracy

Improved GPS plot locations had little influence on predictions of for-
est attributes, suggesting that standard locations of regional inventory
plots may be sufficient for large-landscape NN imputation mapping of
forest composition and structure with lidar and Landsat imagery. How-
ever, ourfindings are in contrast to simulationswhich found that accura-
cy of plot locations did influence predictions of forest attributes (Frazer
et al., 2011; McRoberts, 2010). In the context of NN imputation and
other methods linking field plots to remotely sensed data, we suggest
that many factors need to be considered to determine if plot positional
accuracy affects prediction accuracy, including: 1) accuracy of plot loca-
tions in relation to the spatial resolution of explanatory data, 2) uncer-
tainty in accuracy of plot locations, 3) spatialmismatches between plots
and explanatory data, 4) co-registration error betweenmapped explan-
atory variables, and 5) the scale of spatial autocorrelation of both forest
response variables and mapped explanatory variables.

The average difference between standard and improved GPS loca-
tions was (18.18 m), over half the width of a pixel of Landsat imagery
used in this study. Within the context of the plot templates used to re-
late explanatory data to plots, the average difference between standard
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and improved plot locations changed amajority of pixel assignments
for subplots, but only a minority of pixel assignments for whole plots
(Supplemental Fig. S15), suggesting that standard plot locations are
compatible with the spatial resolution of whole plots and Landsat
imagery. However, it is important to note that improvedGPS “accuracy”
(±0.91 m in this study) is really the precision of the solution, not devi-
ation from true geographic location. GPS receivers like the one used in
this study are classified as sub-meter GPS receivers by manufacturers.
However, this class of GPS receivers produce sub-meter accuracy only
in open-canopy, clear-sky conditions, and have much poorer accuracy
(average ± 2 m, outliers approaching 8 m) under forest canopy
(Wing, Eklund, John, & Richard, 2008). This indicates that while the im-
proved GPS plot locations in this study are an improvement over stan-
dard plot locations, they might have too much positional error to
influence NN imputation in forests with high canopy cover. Accuracy
of plot locations also needs to be considered in the context of how
plots are spatially related to explanatory variables. Some studies pre-
cisely match spatial footprints of plots to lidar data (Andersen,
McGaughey, & Reutebuch, 2005; Erdody & Moskal, 2010), but our
study used the common approach in NN imputation to represent plots
as templates of pixels at the same resolution as the imagery used. This
approach can result in spatial mismatches in size and location between
plots and explanatory data (Fig. 2), which could reduce the influence of
improved plot locations. In addition to errors associated with accuracy
of plot locations and spatial mismatches between plot templates and
explanatory data, co-registration errors can exist between different ex-
planatory data sources. For example, reported positional accuracy of
orthorectified L1G Landsat scenes is ±50 m (Tucker, Grant, & Dykstra,
2004), and other geospatial datasets will have different levels of posi-
tional accuracy. Furthermore, explanatory data from multiple sources
often have different native spatial resolutions and geographic projec-
tions, and conversion to a common resolution and projection can gener-
ate additional spatial errors. Finally, spatial autocorrelation of forest
response variables and mapped explanatory variables may reduce the
importance of accurate plot locations. Small errors in plot locations
may result in spatial mismatches between forest response and mapped
explanatory variables if either vary at a fine spatial resolution. This may
be true in ecotones with short biophysical gradients (Zald et al., 2012),
or in landscapes with abundant edge features and split land cover con-
ditions on plots (Cooke, 2000). However in this study, response and ex-
planatory variables may have spatial autocorrelation at distances
greater than the error of standard plot locations, negating potential
gains from more accurate plot locations. It is important to note that
each of these factors may not individually negate the influence of plot
location accuracy, but additive effectsmay equal or exceed the influence
of plot positional accuracy, and any given mapping application may
have a different combination of factors in which accurate plot locations
may or may not improve prediction accuracy.

4.4. Influence of plot size on prediction accuracy

Plot size was strongly associated with prediction accuracy, with
subplot-based maps having greatly reduced prediction accuracy. There
are several methodological explanations for poor prediction accuracy
using subplots. Species had lower prevalence on subplots than on
plots. More prevalent species occupy larger areas and have wider
niches, resulting in map predictions with higher sensitivity and lower
specificity. Our study found that declines in accuracy between plot-
and subplot-based maps were highest for the least prevalent species,
suggesting that smaller subplots imposed a sampling effect on
species-area curves (sensu Hill, Curran, & Foody, 1994). Smaller plots
had a lower probability of detecting rarer species, and subsequently re-
duced prediction sensitivity. This sampling effect likely applies to rare
forest structures, such as large dead wood, as well. Reduced plot size
may also alter the relationship between response variables and remote-
ly sensed explanatory variables. For example, lidar-derived vegetation
metrics were extracted for the canopy above a given plot template,
but these metrics can be influenced by overhanging branches from
trees whose stems are outside the plot, and the opposite can be true
as well. This can result in lidar metrics that do not represent the trees
measured on plots, and this mismatch becomes more problematic as
plot size decreases. However, a potential confounding factor in our anal-
ysis of plot size is that FIA and CVS plots differ somewhat in the total
area and transect length sampled for live trees, snags, and down wood
(Supplemental Fig. S1). CVS plots have a larger sampling area that
may better detect rare species, trees, and snagswhile FIA plots have lon-
ger transect lengths that may better detect rare down wood. We used
the same template of plot pixels to represent FIA and CVS plots, so spa-
tial mismatches we previously discussed in relation to accuracy of plot
positions may also be important in relation to plot size. Unfortunately,
we did not have adequate sample sizes to quantify the influence of
plot design (FIA versus CVS) on prediction accuracy, but this may be
an important consideration for regional mapping applications when
plot data comes from multiple inventory programs with different plot
sizes and measurement protocols.

Compared to methods that average observations, NN imputation
using a single nearest neighbor [k = 1] may be especially sensitive to
sampling effects, because more rare attributes should be included in
maps when imputing multiple nearest neighbors. One of the biggest
strengths of NN imputation where k = 1 is the conservation of plot-
level co-variance for response variables, but like any empirical approach
NN imputation using a single nearest neighbor will propagate sample-
based errors such asmeasurement errors or inadequacies of the sample
design.

5. Conclusions

Integrating lidar and the LTS disturbance metrics into NN imputa-
tion has the potential to greatly improvemapping of forest composition
and structure over large landscapes. This study found that standard plot
locations of regional forest inventory plots are sufficient for large-extent
NN imputation mapping using lidar. While the best overall forest maps
included both lidar and LTS disturbance metrics, no single map type
provided the best predictions of all species composition and structure
attributes. This suggests that map developers and users need to be
aware of what compositional and structural attributes are most impor-
tant for a given map application, and develop or select maps to empha-
size those attributes accordingly. For example, lidar clearly improved
structural predictions, LTS disturbance metrics improved species
predictions, and the combination of lidar and LTS disturbance metrics
resulted in the most accurate snag predictions.

It is also important to recognize that even the inclusion of lidar and
LTS disturbancemetrics resulted in onlymoderately accurate predictions
of snags and down wood. Given the ecological importance of snags and
down wood in many forest ecosystems (Burrascano, Keeton, Sabatini,
& Blasi, 2013; Harmon et al., 1986), it may be desirable to use other
methods for mapping these structural attributes (Pesonen et al., 2008;
Kimet al., 2009;Martinuzzi et al., 2009; Blanchard et al., 2011). However,
mapping these variables independently would likely comewith the cost
of disrupting covariance relationships with other variables that is a key
strength of NN imputation mapping when k = 1. Alternatively,
incorporation of lidar intensity values and LTS disturbance types as
explanatory variables may provide many of the same benefits. Finally,
this study suggests that LTS disturbance metrics may improve models
of species distributions, and species distribution models should incor-
porate disturbance history as regional and global disturbance maps
are increasingly available.

Acknowledgments

We thankMike Simpson and personnel from theDeschutes National
Forest for providing improved GPS coordinates for FIA and CVS



37H.S.J. Zald et al. / Remote Sensing of Environment 143 (2014) 26–38
inventory plots. Funding for this studywas provided by theUSDA Forest
Service Pacific Northwest Research Station, and a grant from the West-
ern Wildland Environmental Threat Assessment Center. LandTrendr-
processed imagery used in this study was developed under a project
supported by a grant from the USDA National Institute for Forests and
Agriculture.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2013.12.013.

References

Agee, J. K. (1993). Fire ecology of Pacific Northwest forests. Washington, D.C: Island Press.
Agee, J. K. (1994). Fire and weather disturbances in terrestrial ecosystems of the eastern

Cascades. Pacific Northwest Research Station Portland, OR: USDA Forest Service.
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution

models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology,
43, 1223–1232.

Andersen, H. -E., McGaughey, R. J., & Reutebuch, S. E. (2005). Estimating forest canopy fuel
parameters using LIDAR data. Remote Sensing of Environment, 94, 441–449.

Blanchard, S. D., Jakubowski, M. K., & Kelly, M. (2011). Object-based image analysis of
downed logs in disturbed forested landscapes using lidar. Remote Sensing, 3,
2420–2439.

Burrascano, S., Keeton, W. S., Sabatini, F. M., & Blasi, C. (2013). Commonality and variability
in the structural attributes of moist temperate old-growth forests: A global review.
Forest Ecology and Management, 291, 458–479.

Cohen, W. B., & Goward, S. N. (2004). Landsat's role in ecological applications of remote
sensing. Bioscience, 54, 535–545.

Cohen,W. B., Maiersperger, T. K., Spies, T. A., & Oetter, D. R. (2001). Modelling forest cover
attributes as continuous variables in a regional context with Thematic Mapper data.
InternationalJournal of Remote Sensing, 22, 2279–2310.

Cohen, W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002).
Characterizing 23 years (1972–95) of stand replacement disturbance in western
Oregon forests with Landsat imagery. Ecosystems, 5, 122–137.

Cooke, W. H. (2000). Forest/non-forest stratification in Georgia with Landsat Thematic
Mapper data. In Ronald E. McRoberts, Gregory A. Reams, & Paul C. Van Deusen
(Eds.), Proceedings of the First Annual Forest Inventory and Analysis Symposium; Gen.
Tech. Rep. NC-213 (pp. 28–30). : St. Paul, MN: US Department of Agriculture, Forest
Service, North Central Research Station.

Crist, E. P., & Cicone, R. C. (1984). Application of the Tasseled Cap concept to simulated
thematic mapper data (transformation for MSS crop and soil imagery).
Photogrammetric Engineering and Remote Sensing, 50, 343–352.

Crookston, N. L., & Finley, A. O. (2008). yaImpute: An R package for kNN imputation.
Journal of Statistical Software, 23, 1–16.

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., et al. (2008).
Physiographically sensitive mapping of climatological temperature and precipitation
across the conterminous United States. International Journal of Climatology, 28,
2031–2064.

Donoghue, D. N., Watt, P. J., Cox, N. J., & Wilson, J. (2007). Remote sensing of species mix-
tures in conifer plantations using LiDAR height and intensity data. Remote Sensing of
Environment, 110, 509–522.

Dubayah, R. O., & Drake, J. B. (2000). Lidar remote sensing for forestry. Journal of Forestry,
98, 44–46.

Dunn, C. J., & Bailey, J.D. (2012). Temporal dynamics and decay of coarse wood in early
seral habitats of dry-mixed conifer forests in Oregon's Eastern Cascades. Forest
Ecology and Management, 276, 71–81.

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and
prediction across space and time. Annual Review of Ecology, Evolution, and Systematics,
40, 677–697.

Erdody, T. L., & Moskal, L. M. (2010). Fusion of LiDAR and imagery for estimating forest
canopy fuels. Remote Sensing of Environment, 114, 725–737.

Eskelson, B., Temesgen, H., & Hagar, J. (2012). A comparison of selected parametric and
imputation methods for estimating snag density and snag quality attributes. Forest
Ecology and Management, 272, 26–34.

Eskelson, B. N. I., Temesgen, H., Lemay, V., Barrett, T. M., Crookston, N. L., & Hudak, A. T.
(2009). The roles of nearest neighbor methods in imputing missing data in forest
inventory and monitoring databases. Scandinavian Journal of Forest Research, 24,
235–246.

Everett, R. L., Schellhaas, R., Keenum, D., Spurbeck, D., & Ohlson, P. (2000). Fire history in
the ponderosa pine/Douglas-fir forests on the east slope of theWashington Cascades.
Forest Ecology and Management, 129, 207–225.

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A.M. S.
(2010). Landscape-scale parameterization of a tree-level forest growth model: A
k-nearest neighbor imputation approach incorporating LiDAR data. Canadian
Journal of Forest Research, 40, 184–199.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction
errors in conservation presence/absence models. Environmental Conservation, 24,
38–49.

Franklin, J. F., & Dyrness, C. T. (1988). Natural vegetation of Oregon and Washington.
Franklin, J. F., Spies, T. A., Pelt, R. V., Carey, A.B.., Thornburgh, D. A., Berg, D. R., et al. (2002).
Disturbances and structural development of natural forest ecosystemswith silvicultural
implications, using Douglas-fir forests as an example. Forest Ecology and Management,
155, 399–423.

Frazer, G., Magnussen, S., Wulder, M., & Niemann, K. (2011). Simulated impact of sample
plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived
estimates of forest stand biomass. Remote Sensing of Environment, 115, 636–649.

Gjertsen, A. K. (2007). Accuracy of forest mapping based on Landsat TM data and a
kNN-based method. Remote Sensing of Environment, 110, 420–430.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than
simple habitat models. Ecology Letters, 8, 993–1009.

Hansen, M., DeFries, R., Townshend, J., Carroll, M., Dimiceli, C., & Sohlberg, R. (2003).
Global percent tree cover at a spatial resolution of 500 meters: First results of the
MODIS vegetation continuous fields algorithm. Earth Interactions, 7, 1–15.

Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S., Lattin, J., et al. (1986).
Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological
Research, 15, 302.

Harmon, M. E., & Sexton, J. (1996). Guidelines for measurements of woody detritus in forest
ecosystems. Office Seattle (WA): US LTER Network.

Henderson, E. B., Ohmann, J. L., Gregory, M. J., Roberts, H. M., & Zald, H. (2014). All for one
or one for all: Should plant communities be mapped one species at a time or all
species at once? Applied Vegetation Science (in press).

Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2001). Spatial controls of historical fire
regimes: A multiscale example from the interior west, USA. Ecology, 82, 660–678.

Hill, J. L., Curran, P. J., & Foody, G. M. (1994). The effect of sampling on the species-area
curve. Global Ecology and Biogeography Letters, 97–106.

Holmgren, J. (2004). Prediction of tree height, basal area and stem volume in forest stands
using airborne laser scanning. Scandinavian Journal of Forest Research, 19, 543–553.

Hoppus, M., & Lister, A. (2005). The status of accurately locating forest inventory and anal-
ysis plots using the global positioning system. In Ronald E. McRoberts, Gregory A.
Reams, & Paul C. Van Deusen (Eds.), Proceedings of the seventh annual forest inventory
and analysis symposium; Gen. Tech. Rep. WO-77 (pp. 179–184). Portland: ME: US
Department of Agriculture, Forest Service.

Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010). An
automated approach for reconstructing recent forest disturbance history using
dense Landsat time series stacks. Remote Sensing of Environment, 114, 183–198.

Hudak, A. T., Crookston, N. L., Evans, J. S., Falkowski, M. J., Smith, A.M., Gessler, P. E., et al.
(2006). Regression modeling and mapping of coniferous forest basal area and tree
density from discrete-return lidar and multispectral satellite data. Canadian Journal
of Remote Sensing, 32, 126–138.

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest
neighbor imputation of species-level, plot-scale forest structure attributes from
LiDAR data. Remote Sensing of Environment, 112, 2232–2245.

Iverson, L. R., & Prasad, A.M. (1998). Predicting abundance of 80 tree species following
climate change in the eastern United States. Ecological Monographs, 68, 465–485.

Ji, L., & Gallo, K. (2006). An agreement coefficient for image comparison. Photogrammetric
Engineering and Remote Sensing, 72, 823–833.

Kane, V. R., Bakker, J.D., McGaughey, R. J., Lutz, J. A., Gersonde, R. F., & Franklin, J. F. (2010).
Examining conifer canopy structural complexity across forest ages and elevations
with LiDAR data. Canadian Journal of Forest Research, 40, 774–787.

Kauth, R. J., & Thomas, G. (1976). The tasselled cap—A graphic description of the
spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia
(pp. 159).

Kennedy, R. E., Yang, Z., & Cohen,W. B. (2010). Detecting trends in forest disturbance and
recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation
algorithms. Remote Sensing of Environment, 114, 2897–2910.

Kim, Y., Yang, Z., Cohen, W. B., Pflugmacher, D., Lauver, C. L., & Vankat, J. L. (2009).
Distinguishing between live and dead standing tree biomass on the North Rim of
Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing
of Environment, 113, 2499–2510.

Lefsky, M.A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for
ecosystem studies. Bioscience, 52, 19–30.

Littell, J. S., McKenzie, D., Peterson, D. L., &Westerling, A. L. (2009). Climate and wildfire area
burned in western US ecoprovinces, 1916–2003. Ecological Applications, 19, 1003–1021.

Lopes, R. H., Reid, I., & Hobson, P. R. (April 23–27, 2007). The two-dimensional Kolmogorov–
Smirnov test. XI international workshop on advanced computing and analysis techniques
in physics research, Nikhef, Amsterdam, the Netherlands.

Lu, D. (2006). The potential and challenge of remote sensing‐based biomass estimation.
International Journal of Remote Sensing, 27, 1297–1328.

Martinuzzi, S., Vierling, L. A., Gould, W. A., Falkowski, M. J., Evans, J. S., Hudak, A. T., et al.
(2009). Mapping snags and understory shrubs for a LiDAR-based assessment of wild-
life habitat suitability. Remote Sensing of Environment, 113, 2533–2546.

Masek, J. G., Huang, C., Wolfe, R., Cohen, W., Hall, F., Kutler, J., et al. (2008). North
American forest disturbance mapped from a decadal Landsat record. Remote
Sensing of Environment, 112, 2914–2926.

Max, T. A., Schreuder, H. T., Hazard, J., Oswald, D.D., Teply, J., & Alegria, J. (1996). The Pacific
Northwest region vegetation and inventory monitoring system. USDA Forest Service
Research Paper PNW-RP-493.

McGaughey, R. (2013). FUSION/LDV: Software for LIDAR data analysis and visualization. : US
Department of Agriculture, Forest Service, Pacific Northwest Research Station.

McRoberts, R. E. (2009). A two-step nearest neighbors algorithm using satellite imagery
for predicting forest structure within species composition classes. Remote Sensing of
Environment, 113, 532–545.

McRoberts, R. E. (2010). The effects of rectification and Global Positioning System errors
on satellite image-based estimates of forest area. Remote Sensing of Environment,
114, 1710–1717.

http://dx.doi.org/10.1016/j.rse.2013.12.013
http://dx.doi.org/10.1016/j.rse.2013.12.013
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0410
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0005
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0005
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0010
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0010
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0010
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0015
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0015
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0020
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0020
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0020
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0025
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0025
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0025
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0040
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0040
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0030
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0030
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0030
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0035
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0035
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0035
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0415
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0415
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0415
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0415
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0415
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0045
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0045
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0045
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0420
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0420
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0050
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0050
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0050
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0055
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0055
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0055
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0060
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0060
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0065
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0065
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0065
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0070
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0070
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0070
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0075
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0075
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0085
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0085
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0085
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0080
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0080
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0080
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0090
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0090
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0090
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0095
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0095
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0095
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0100
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0100
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0100
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0425
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0105
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0105
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0105
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0110
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0110
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0110
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0115
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0115
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0120
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0120
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0125
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0125
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0125
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0130
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0130
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0135
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0135
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0430
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0430
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0430
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0140
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0140
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0145
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0145
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0150
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0150
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0435
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0435
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0435
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0435
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0435
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0155
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0155
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0155
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0160
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0160
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0160
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0165
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0165
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0165
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0170
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0170
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0175
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0175
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0180
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0180
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0440
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0440
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0440
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0445
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0445
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0445
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0185
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0185
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0185
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0190
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0190
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0195
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0195
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0200
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0200
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0200
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0205
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0205
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0210
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0210
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0215
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0215
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0215
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0450
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0450
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0450
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0220
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0220
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0225
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0225
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0225
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0230
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0230
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0230


38 H.S.J. Zald et al. / Remote Sensing of Environment 143 (2014) 26–38
Means, J. E., Acker, S. A., Fitt, B. J., Renslow, M., Emerson, L., & Hendrix, C. J. (2000).
Predicting forest stand characteristics with airborne scanning lidar. PE & RS-
Photogrammetric Engineering & Remote Sensing, 66, 1367–1371.

Meigs, G. W., Kennedy, R. E., & Cohen, W. B. (2011). A Landsat time series approach to
characterize bark beetle and defoliator impacts on tree mortality and surface fuels
in conifer forests. Remote Sensing of Environment, 115, 3707–3718.

Moeur,M., Ohmann, J. L., Kennedy, R. E., Cohen,W. B., Gregory, M. J., Yang, Z., et al. (2011).
Northwest forest plan — The first ten years (1994–2003): Status and trends of
late-successional and old-growth forests. In F.S. U.S. Department of Agriculture, &
Pacific Northwest Research Station (Eds.), Portland, OR: U.S. Department of Agricul-
ture, Forest Service.

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using
a practical two-stage procedure and field data. Remote Sensing of Environment, 80,
88–99.

Ohmann, J. L., & Gregory, M. J. (2002). Predictive mapping of forest composition and
structure with direct gradient analysis and nearest-neighbor imputation in coastal
Oregon, USA. Canadian Journal of Forest Research, 32, 725–741.

Ohmann, J. L., Gregory, M. J., Henderson, E. B., & Roberts, H. M. (2011). Mapping gradients
of community composition with nearest‐neighbour imputation: Extending plot data
for landscape analysis. Journal of Vegetation Science, 22, 660–676.

Ohmann, J. L., Gregory, M. J., & Roberts, H. M. (2013). Scale considerations for integrating
forest inventory plot data and satellite image data for regional forest mapping.
Remote Sensing and Environment., http://dx.doi.org/10.1016/j.rse.2013.08.048.

Ohmann, J. L., Gregory,M. J., Roberts, H. M., Cohen,W. B., Kennedy, R. E., & Yang, Z. (2012).
Mapping change of older forest with nearest-neighbor imputation and Landsat
time-series. Forest Ecology and Management, 272, 13–25.

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., et al. (2012).
Package ‘vegan’ — Community Ecology Package, version 2.0–4.

Oliver, C. D. (1980). Forest development in North America following major disturbances.
Forest Ecology and Management, 3, 153–168.

Orr, E. L., Orr,W. N., & Baldwin, E. M. (1992). Geology of Oregon. IA: Kendall/Hunt Publishing
Company Dubuque.

Pesonen, A., Maltamo, M., Eerikäinen, K., & Packalèn, P. (2008). Airborne laser
scanning-based prediction of coarse woody debris volumes in a conservation area.
Forest Ecology and Management, 255, 3288–3296.

Pflugmacher, D., Cohen, W. B., & Kennedy, R. E. (2012). Using Landsat-derived distur-
bance history (1972–2010) to predict current forest structure. Remote Sensing of
Environment, 122, 146–165.

Pierce, K. B., Lookingbill, T., & Urban, D. (2005). A simple method for estimating potential
relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology,
20, 137–147.

Pierce, K. B., Ohmann, J. L., Wimberly, M. C., Gregory, M. J., & Fried, J. S. (2009). Mapping
wildland fuels and forest structure for land management: A comparison of nearest
neighbor imputation and other methods. Canadian Journal of Forest Research, 39,
1901–1916.

R Core Team (2012). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.

Reese, H., Nilsson, M., Pahlén, T. G., Hagner, O., Joyce, S., Tingelöf, U., et al. (2003).
Countrywide estimates of forest variables using satellite data and field data
from the national forest inventory. AMBIO: A Journal of the Human Environment,
32, 542–548.

Reutebuch, S. E., Andersen, H. -E., & McGaughey, R. J. (2005). Light detection and ranging
(LIDAR): An emerging tool for multiple resource inventory. Journal of Forestry, 103,
286–292.

Riemann, R., Wilson, B. T., Lister, A., & Parks, S. (2010). An effective assessment protocol
for continuous geospatial datasets of forest characteristics using USFS Forest Inventory
and Analysis (FIA) data. Remote Sensing of Environment, 114, 2337–2352.
Schoonmaker, P., & McKee, A. (1988). Species composition and diversity during second-
ary succession of coniferous forests in the western Cascade Mountains of Oregon.
Forest Science, 34, 960–979.

Scott, C. T., Bechtold, W. A., Reams, G. A., Smith, W. D., Westfall, J. A., Hansen, M. H., et al.
(2005). Sample-based estimators used by the forest inventory and analysis national
information management system. The enhanced forest inventory and analysis
program—National sampling design and estimation procedures, 43–67.

Soininen, A. (2004). Terrascan user's guide. Helsinki, Finland: Terrasolid.
Spies, T. A. (1991). Plant species diversity and occurrence in young, mature, and old-growth

Douglas-fir stands in western Oregon and Washington. USDA Forest Service general
technical report PNW-GTR-285. : Pacific Northwest Research Station.

Spies, T. A., Johnson, K. N., Burnett, K. M., Ohmann, J. L., McComb, B. C., Reeves, G. H., et al.
(2007). Cumulative ecological and socioeconomic effects of forest policies in coastal
Oregon. Ecological Applications, 17, 5–17.

ter Braak, C. J. (1986). Canonical correspondence analysis: A new eigenvector technique
for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

Tomppo, E. (1991). Satellite image-based national forest inventory of Finland.
International Archives of Photogrammetry and Remote Sensing, 28, 419–424.

Tomppo, E., Goulding, C., & Katila, M. (1999). Adapting Finnishmulti-source forest inventory
techniques to the New Zealand Preharvest inventory. Scandinavian Journal of Forest
Research, 14, 182–192.

Tomppo, E., Olsson, H., Ståhl, G., Nilsson, M., Hagner, O., & Katila, M. (2008). Combining
national forest inventory field plots and remote sensing data for forest databases.
Remote Sensing of Environment, 112, 1982–1999.

Tucker, C. J., Grant, D.M., & Dykstra, J.D. (2004). NASA's global orthorectified Landsat data
set. Photogrammetric Engineering and Remote Sensing, 70, 313–322.

Turner, D. P., Cohen,W. B., Kennedy, R. E., Fassnacht, K. S., & Briggs, J. M. (1999). Relation-
ships between leaf area index and Landsat TM spectral vegetation indices across
three temperate zone sites. Remote Sensing of Environment, 70, 52–68.

U.S. Department of Agriculture Forest Service [USFS]. (2003). Forest inventory and analy-
sis national core field guide, vol. 1. Field data collection procedures for phase 2 plots,
version 2.0. Washington, DC.

U.S. Department of Agriculture Natural Resources Conservation Service [USDA-NRCS]
(1995). Soil survey geographic (SSURGO). Data base: Data use information. Fort
Worth, Texas: National Cartography and GIS Center.

U.S. Department of Agriculture Soil Conservation Service [USDA-SCS] (1993). State
soil geographic data base (STATSGO). Soil conservation service, U.S. Department
of Agriculture.Miscellaneous publication no. 1492. Washington, D.C: U.S. Government
Printing Office.

Wilson, B. T., Lister, A. J., & Riemann, R. I. (2012). A nearest-neighbor imputation approach
to mapping tree species over large areas using forest inventory plots and moderate
resolution raster data. Forest Ecology and Management, 271, 182–198.

Wing, M. G., Eklund, A., John, S., & Richard, K. (2008). Horizontal measurement perfor-
mance of five mapping-grade Global Positioning System receiver configurations in
several forested settings. Western Journal of Applied Forestry, 23, 166–171.

Woldendorp, G., Keenan, R., Barry, S., & Spencer, R. (2004). Analysis of sampling methods
for coarse woody debris. Forest Ecology and Management, 198, 133–148.

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., et al.
(2008). Free access to Landsat imagery. Science, 320, 1011.

Woodcock, C. E., Collins, J. B., Gopal, S., Jakabhazy, V. D., Li, X., Macomber, S., et al. (1994).
Mapping forest vegetation using Landsat TM imagery and a canopy reflectance
model. Remote Sensing of Environment, 50, 240–254.

Wright, C. S., & Agee, J. K. (2004). Fire and vegetation history in the eastern Cascade
Mountains, Washington. Ecological Applications, 14, 443–459.

Zald, H. S., Spies, T. A., Huso, M., & Gatziolis, D. (2012). Climatic, landform,
microtopographic, and overstory canopy controls of tree invasion in a subalpine
meadow landscape, Oregon Cascades, USA. Landscape Ecology, 27, 1197–1212.

http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0235
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0235
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0240
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0240
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0240
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0245
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0245
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0245
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0245
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0250
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0250
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0250
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0255
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0255
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0255
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0260
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0260
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0260
http://dx.doi.org/10.1016/j.rse.2013.08.048
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0265
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0265
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0460
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0270
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0270
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0275
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0275
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0280
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0280
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0280
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0285
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0285
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0285
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0290
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0290
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0290
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0295
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0295
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0295
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0295
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0300
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0300
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0305
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0305
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0305
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0310
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0310
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0310
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0315
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0315
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0315
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0320
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0320
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0320
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0465
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0465
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0465
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0325
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0470
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0470
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0470
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0330
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0330
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0335
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0335
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0340
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0340
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0345
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0345
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0345
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0350
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0350
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0350
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0355
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0355
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0360
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0360
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0360
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0365
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0365
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0365
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0475
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0475
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0370
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0370
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0370
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0370
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0375
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0375
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0375
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0380
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0380
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0380
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0385
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0385
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0395
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0390
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0390
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0400
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0400
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0405
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0405
http://refhub.elsevier.com/S0034-4257(13)00453-7/rf0405

	Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation m...
	1. Introduction
	2. Methods
	2.1. Study area
	2.2. Forest composition and structure response data from field plots
	2.3. Mapped explanatory data
	2.4. Nearest-neighbor imputation mapping
	2.5. Accuracy assessment

	3. Results
	3.1. Vegetation structure
	3.2. Species composition

	4. Discussion
	4.1. Influence of lidar-derived vegetation metrics on prediction accuracy
	4.2. Influence of LTS disturbance metrics on prediction accuracy
	4.3. Influence of improved plot locations on prediction accuracy
	4.4. Influence of plot size on prediction accuracy

	5. Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References


